--- pipeline_tag: zero-shot-classification language: - da - no - nb - sv license: mit datasets: - strombergnlp/danfever - mnli_da - mnli_sv - mnli_nb - cb_da - cb_sv - cb_nb - fever_sv - anli_sv model-index: - name: nb-bert-large-ner-scandi results: [] widget: - example_title: Danish text: Mexicansk bokser advarer Messi - 'Du skal bede til gud, om at jeg ikke finder dig' candidate_labels: sundhed, politik, sport, religion hypothesis_template: "Dette eksempel handler om {}" - example_title: Norwegian text: Folkehelseinstituttets mest optimistiske anslag er at alle voksne er ferdigvaksinert innen midten av september. candidate_labels: helse, politikk, sport, religion hypothesis_template: "Dette eksemplet handler om {}" - example_title: Swedish text: ”Öppna, öppna” - hundratals demonstrerade mot hårda covidrestriktioner i Peking candidate_labels: hälsa, politik, sport, religion hypothesis_template: "Det här exemplet handlar om {}" --- # ScandiNLI - Natural Language Inference model for Scandinavian Languages This model is a fine-tuned version of [NbAiLab/nb-bert-large](https://huggingface.co/NbAiLab/nb-bert-large) for Natural Language Inference in Danish, Norwegian Bokmål and Swedish. It has been fine-tuned on a dataset composed of [DanFEVER](https://aclanthology.org/2021.nodalida-main.pdf#page=439) as well as machine translated versions of [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) and [CommitmentBank](https://doi.org/10.18148/sub/2019.v23i2.601) into all three languages, and machine translated versions of [FEVER](https://aclanthology.org/N18-1074/) and [Adversarial NLI](https://aclanthology.org/2020.acl-main.441/) into Swedish. The three languages are sampled equally during training, and they're validated on validation splits of [DanFEVER](https://aclanthology.org/2021.nodalida-main.pdf#page=439) and machine translated versions of [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) for Swedish and Norwegian Bokmål, sampled equally. ## Quick start You can use this model in your scripts as follows: ```python >>> from transformers import pipeline >>> classifier = pipeline( ... "zero-shot-classification", ... model="alexandrainst/nb-bert-large-nli-scandi", ... ) >>> classifier( ... "Mexicansk bokser advarer Messi - 'Du skal bede til gud, om at jeg ikke finder dig'", ... candidate_labels=['sundhed', 'politik', 'sport', 'religion'], ... hypothesis_template="Dette eksempel handler om {}", ... ) {'sequence': "Mexicansk bokser advarer Messi - 'Du skal bede til gud, om at jeg ikke finder dig'", 'labels': ['sport', 'religion', 'politik', 'sundhed'], 'scores': [0.6134647727012634, 0.30309760570526123, 0.05021871626377106, 0.03321893885731697]} ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 4242 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9, 0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - max_steps: 50,000