File size: 2,529 Bytes
6b6e221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: llama2
base_model: codellama/CodeLlama-7b-Instruct-hf
tags:
- generated_from_trainer
model-index:
- name: code-llama-instruct-7b-text-to-sparql-axiom-prefix
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# code-llama-instruct-7b-text-to-sparql-axiom-prefix

This model is a fine-tuned version of [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0988

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 400
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.138         | 0.0710 | 20   | 1.0843          |
| 0.6257        | 0.1421 | 40   | 0.3315          |
| 0.1388        | 0.2131 | 60   | 0.1390          |
| 0.1293        | 0.2842 | 80   | 0.1269          |
| 0.1174        | 0.3552 | 100  | 0.1205          |
| 0.1097        | 0.4263 | 120  | 0.1176          |
| 0.1102        | 0.4973 | 140  | 0.1131          |
| 0.1073        | 0.5684 | 160  | 0.1083          |
| 0.1064        | 0.6394 | 180  | 0.1064          |
| 0.1079        | 0.7105 | 200  | 0.1053          |
| 0.1025        | 0.7815 | 220  | 0.1042          |
| 0.1038        | 0.8526 | 240  | 0.1029          |
| 0.0962        | 0.9236 | 260  | 0.1023          |
| 0.1021        | 0.9947 | 280  | 0.1013          |
| 0.098         | 1.0657 | 300  | 0.1008          |
| 0.0964        | 1.1368 | 320  | 0.1003          |
| 0.0961        | 1.2078 | 340  | 0.0997          |
| 0.0948        | 1.2789 | 360  | 0.0994          |
| 0.0955        | 1.3499 | 380  | 0.0989          |
| 0.0988        | 1.4210 | 400  | 0.0988          |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.10.1
- Tokenizers 0.19.1