alexbeta80 commited on
Commit
36280f1
1 Parent(s): af6ae72

End of training

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: FacebookAI/xlm-roberta-base
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: xlm-roberta-base-finetuned-ner
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # xlm-roberta-base-finetuned-ner
20
+
21
+ This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.0533
24
+ - Precision: 0.9431
25
+ - Recall: 0.9740
26
+ - F1: 0.9583
27
+ - Accuracy: 0.9850
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
+ - train_batch_size: 2
48
+ - eval_batch_size: 2
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 3
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 0.1784 | 1.0 | 4667 | 0.1376 | 0.8521 | 0.9175 | 0.8836 | 0.9580 |
59
+ | 0.1155 | 2.0 | 9334 | 0.0790 | 0.9150 | 0.9636 | 0.9387 | 0.9779 |
60
+ | 0.086 | 3.0 | 14001 | 0.0533 | 0.9431 | 0.9740 | 0.9583 | 0.9850 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.41.2
66
+ - Pytorch 2.1.2
67
+ - Datasets 2.19.2
68
+ - Tokenizers 0.19.1