--- license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-base-finetuned-ner results: [] --- # xlm-roberta-base-finetuned-ner This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0533 - Precision: 0.9431 - Recall: 0.9740 - F1: 0.9583 - Accuracy: 0.9850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1784 | 1.0 | 4667 | 0.1376 | 0.8521 | 0.9175 | 0.8836 | 0.9580 | | 0.1155 | 2.0 | 9334 | 0.0790 | 0.9150 | 0.9636 | 0.9387 | 0.9779 | | 0.086 | 3.0 | 14001 | 0.0533 | 0.9431 | 0.9740 | 0.9583 | 0.9850 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1