--- license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-base-finetuned-ner results: [] --- # xlm-roberta-base-finetuned-ner This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1709 - Precision: 0.9135 - Recall: 0.9540 - F1: 0.9333 - Accuracy: 0.9703 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2034 | 1.0 | 3528 | 0.1751 | 0.8395 | 0.8960 | 0.8668 | 0.9486 | | 0.1664 | 2.0 | 7056 | 0.1565 | 0.8781 | 0.9253 | 0.9010 | 0.9586 | | 0.0924 | 3.0 | 10584 | 0.1574 | 0.8903 | 0.9382 | 0.9136 | 0.9643 | | 0.0641 | 4.0 | 14112 | 0.1663 | 0.9013 | 0.9551 | 0.9274 | 0.9664 | | 0.0348 | 5.0 | 17640 | 0.1709 | 0.9135 | 0.9540 | 0.9333 | 0.9703 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1