--- base_model: FacebookAI/xlm-roberta-large library_name: peft license: mit metrics: - precision - recall - f1 - accuracy tags: - generated_from_trainer model-index: - name: xlm-roberta-large-finetuned-ner results: [] --- # xlm-roberta-large-finetuned-ner This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1297 - Precision: 0.9233 - Recall: 0.9608 - F1: 0.9416 - Accuracy: 0.9764 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2578 | 1.0 | 1167 | 0.1724 | 0.8145 | 0.8758 | 0.8440 | 0.9436 | | 0.1792 | 2.0 | 2334 | 0.1305 | 0.8636 | 0.9089 | 0.8857 | 0.9603 | | 0.1224 | 3.0 | 3501 | 0.1390 | 0.8714 | 0.9398 | 0.9043 | 0.9617 | | 0.0894 | 4.0 | 4668 | 0.1201 | 0.8856 | 0.9444 | 0.9140 | 0.9646 | | 0.0731 | 5.0 | 5835 | 0.1264 | 0.8848 | 0.9497 | 0.9161 | 0.9696 | | 0.0597 | 6.0 | 7002 | 0.1247 | 0.9231 | 0.9516 | 0.9371 | 0.9751 | | 0.044 | 7.0 | 8169 | 0.1141 | 0.9177 | 0.9468 | 0.9320 | 0.9749 | | 0.0373 | 8.0 | 9336 | 0.1235 | 0.9126 | 0.9597 | 0.9355 | 0.9739 | | 0.024 | 9.0 | 10503 | 0.1286 | 0.9226 | 0.9578 | 0.9399 | 0.9762 | | 0.0209 | 10.0 | 11670 | 0.1297 | 0.9233 | 0.9608 | 0.9416 | 0.9764 | ### Framework versions - PEFT 0.11.1 - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1