Alexandra Kueck commited on
Commit
4f4ea55
1 Parent(s): 23850b4

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -34
README.md CHANGED
@@ -1,49 +1,60 @@
1
  ---
2
  license: apache-2.0
3
  tags:
4
- - setfit
5
- - sentence-transformers
6
- - text-classification
7
- pipeline_tag: text-classification
 
 
8
  ---
9
 
10
- # alexkueck/li-tis-tuned-2
 
11
 
12
- This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
13
 
14
- 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
15
- 2. Training a classification head with features from the fine-tuned Sentence Transformer.
 
16
 
17
- ## Usage
18
 
19
- To use this model for inference, first install the SetFit library:
20
 
21
- ```bash
22
- python -m pip install setfit
23
- ```
24
 
25
- You can then run inference as follows:
26
 
27
- ```python
28
- from setfit import SetFitModel
29
 
30
- # Download from Hub and run inference
31
- model = SetFitModel.from_pretrained("alexkueck/li-tis-tuned-2")
32
- # Run inference
33
- preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
34
- ```
35
 
36
- ## BibTeX entry and citation info
37
 
38
- ```bibtex
39
- @article{https://doi.org/10.48550/arxiv.2209.11055,
40
- doi = {10.48550/ARXIV.2209.11055},
41
- url = {https://arxiv.org/abs/2209.11055},
42
- author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
43
- keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
44
- title = {Efficient Few-Shot Learning Without Prompts},
45
- publisher = {arXiv},
46
- year = {2022},
47
- copyright = {Creative Commons Attribution 4.0 International}
48
- }
49
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
  tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - squad
7
+ model-index:
8
+ - name: li-tis-tuned-2
9
+ results: []
10
  ---
11
 
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
 
15
+ # li-tis-tuned-2
16
 
17
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 1.7269
20
 
21
+ ## Model description
22
 
23
+ More information needed
24
 
25
+ ## Intended uses & limitations
 
 
26
 
27
+ More information needed
28
 
29
+ ## Training and evaluation data
 
30
 
31
+ More information needed
 
 
 
 
32
 
33
+ ## Training procedure
34
 
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 2e-05
39
+ - train_batch_size: 16
40
+ - eval_batch_size: 16
41
+ - seed: 42
42
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
43
+ - lr_scheduler_type: linear
44
+ - num_epochs: 3
45
+
46
+ ### Training results
47
+
48
+ | Training Loss | Epoch | Step | Validation Loss |
49
+ |:-------------:|:-----:|:----:|:---------------:|
50
+ | No log | 1.0 | 250 | 2.7023 |
51
+ | 2.8709 | 2.0 | 500 | 1.8528 |
52
+ | 2.8709 | 3.0 | 750 | 1.7269 |
53
+
54
+
55
+ ### Framework versions
56
+
57
+ - Transformers 4.29.1
58
+ - Pytorch 2.0.1+cu117
59
+ - Datasets 2.14.4
60
+ - Tokenizers 0.13.3