--- backbone: - diffusion domain: - multi-modal frameworks: - pytorch license: cc-by-nc-nd-4.0 metrics: - realism - video-video similarity studios: - damo/Video-to-Video tags: - video2video generation - diffusion model - 视频到视频 - 视频超分辨率 - 视频生成视频 - 生成 tasks: - video-to-video widgets: - examples: - inputs: - data: A panda eating bamboo on a rock. name: text - data: XXX/test.mpt name: video_path name: 2 title: 示例1 inferencespec: cpu: 4 gpu: 1 gpu_memory: 28000 memory: 32000 inputs: - name: text, video_path title: 输入英文prompt, 视频路径 type: str, str validator: max_words: 75, / task: video-to-video --- # Video-to-Video 本项目**MS-Vid2Vid**由达摩院研发和训练,主要用于提升文生视频、图生视频的分辨率和时空连续性,其训练数据包含了精选的海量的高清视频、图像数据(最短边>720),可以将低分辨率的(16:9)的视频提升到更高分辨率(1280 * 720),可以用于任意低分辨率的的超分,本页面我们将称之为**MS-Vid2Vid-XL**。 The **MS-Vid2Vid** project is developed and trained by Damo Academy and is primarily used to enhance the resolution and spatiotemporal continuity of text-generated videos and image-generated videos. The training data consists of a large selection of high-definition videos and image data (with a minimum short side length of 720), which can upscale low-resolution (16:9) videos to higher resolutions (1280 * 720). It can be used for arbitrary low-resolution super-resolution tasks. On this page, we refer to it as **MS-Vid2Vid-XL**.


Fig.1 Video-to-Video-XL

## 模型介绍 (Introduction) **MS-Vid2VidL**是基于Stable Diffusion设计而得,其设计细节延续我们自研[VideoComposer](https://videocomposer.github.io),具体可以参考其技术报告。如下示例中,左边是低分(448 * 256),细节会存在抖动,时序一致性较差 右边是高分(1280 * 720),总体会平滑很多,在很多case具有较强的修正能力。 **MS-Vid2Vid-XL** is designed based on Stable Diffusion, with design details inherited from our in-house [VideoComposer](https://videocomposer.github.io). For specific information, please refer to our technical report.








### 代码范例 (Code example) ```python from modelscope.pipelines import pipeline from modelscope.outputs import OutputKeys # VID_PATH: your video path # TEXT : your text description pipe = pipeline(task="video-to-video", model='damo/Video-to-Video') p_input = { 'video_path': VID_PATH, 'text': TEXT } output_video_path = pipe(p_input, output_video='./output.mp4')[OutputKeys.OUTPUT_VIDEO] ``` ### 模型局限 (Limitation) 本**MS-Vid2Vid-XL**可能存在如下可能局限性: - 目标距离较远时可能会存在一定的模糊,该问题可以通过输入文本来解决或缓解; - 计算时耗大,因为需要生成720P的视频,隐空间的尺寸为(160 * 90),单个视频计算时长>2分钟 - 目前仅支持英文,因为训练数据的原因目前仅支持英文输入 This **MS-Vid2Vid-XL** may have the following limitations: - There may be some blurriness when the target is far away. This issue can be addressed by providing input text. - Computation time is high due to the need to generate 720P videos. The latent space size is (160 * 90), and the computation time for a single video is more than 2 minutes. - Currently, it only supports English. This is due to the training data, which is limited to English inputs at the moment. ## 相关论文以及引用信息 (Reference) ``` @article{videocomposer2023, title={VideoComposer: Compositional Video Synthesis with Motion Controllability}, author={Wang, Xiang* and Yuan, Hangjie* and Zhang, Shiwei* and Chen, Dayou* and Wang, Jiuniu and Zhang, Yingya and Shen, Yujun and Zhao, Deli and Zhou, Jingren}, journal={arXiv preprint arXiv:2306.02018}, year={2023} } @inproceedings{videofusion2023, title={VideoFusion: Decomposed Diffusion Models for High-Quality Video Generation}, author={Luo, Zhengxiong and Chen, Dayou and Zhang, Yingya and Huang, Yan and Wang, Liang and Shen, Yujun and Zhao, Deli and Zhou, Jingren and Tan, Tieniu}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, year={2023} } ``` ## 使用协议 (License Agreement) 我们的代码和模型权重仅可用于个人/学术研究,暂不支持商用。 Our code and model weights are only available for personal/academic research use and are currently not supported for commercial use.