File size: 12,926 Bytes
1486a26 7a28b7f 0a93b89 7a28b7f 0a93b89 7a28b7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
---
license: mit
---
# VGen
![figure1](source/VGen.jpg "figure1")
VGen is an open-source video synthesis codebase developed by the Tongyi Lab of Alibaba Group, featuring state-of-the-art video generative models. This repository includes implementations of the following methods:
- [I2VGen-xl: High-quality image-to-video synthesis via cascaded diffusion models](https://i2vgen-xl.github.io/)
- [VideoComposer: Compositional Video Synthesis with Motion Controllability](https://videocomposer.github.io/)
- [Hierarchical Spatio-temporal Decoupling for Text-to-Video Generation](https://higen-t2v.github.io/)
- [A Recipe for Scaling up Text-to-Video Generation with Text-free Videos]()
- [InstructVideo: Instructing Video Diffusion Models with Human Feedback]()
- [DreamVideo: Composing Your Dream Videos with Customized Subject and Motion](https://dreamvideo-t2v.github.io/)
- [VideoLCM: Video Latent Consistency Model](https://arxiv.org/abs/2312.09109)
- [Modelscope text-to-video technical report](https://arxiv.org/abs/2308.06571)
VGen can produce high-quality videos from the input text, images, desired motion, desired subjects, and even the feedback signals provided. It also offers a variety of commonly used video generation tools such as visualization, sampling, training, inference, join training using images and videos, acceleration, and more.
<a href='https://i2vgen-xl.github.io/'><img src='https://img.shields.io/badge/Project-Page-Green'></a> <a href='https://arxiv.org/abs/2311.04145'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a> [![YouTube](https://badges.aleen42.com/src/youtube.svg)](https://youtu.be/XUi0y7dxqEQ) <a href='https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441039979087.mp4'><img src='source/logo.png'></a>
## 🔥News!!!
- __[2023.12]__ We release the high-efficiency video generation method [VideoLCM](https://arxiv.org/abs/2312.09109)
- __[2023.12]__ We release the code and model of I2VGen-XL and the ModelScope T2V
- __[2023.12]__ We release the T2V method [HiGen](https://higen-t2v.github.io) and customizing T2V method [DreamVideo](https://dreamvideo-t2v.github.io).
- __[2023.12]__ We write an [introduction docment](doc/introduction.pdf) for VGen and compare I2VGen-XL with SVD.
- __[2023.11]__ We release a high-quality I2VGen-XL model, please refer to the [Webpage](https://i2vgen-xl.github.io)
## TODO
- [x] Release the technical papers and webpage of [I2VGen-XL](doc/i2vgen-xl.md)
- [x] Release the code and pretrained models that can generate 1280x720 videos
- [ ] Release models optimized specifically for the human body and faces
- [ ] Updated version can fully maintain the ID and capture large and accurate motions simultaneously
- [ ] Release other methods and the corresponding models
## Preparation
The main features of VGen are as follows:
- Expandability, allowing for easy management of your own experiments.
- Completeness, encompassing all common components for video generation.
- Excellent performance, featuring powerful pre-trained models in multiple tasks.
### Installation
```
conda create -n vgen python=3.8
conda activate vgen
pip install torch==1.12.0+cu113 torchvision==0.13.0+cu113 torchaudio==0.12.0 --extra-index-url https://download.pytorch.org/whl/cu113
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
```
### Datasets
We have provided a **demo dataset** that includes images and videos, along with their lists in ``data``.
*Please note that the demo images used here are for testing purposes and were not included in the training.*
### Clone codeb
```
git clone https://github.com/damo-vilab/i2vgen-xl.git
cd i2vgen-xl
```
## Getting Started with VGen
### (1) Train your text-to-video model
Executing the following command to enable distributed training is as easy as that.
```
python train_net.py --cfg configs/t2v_train.yaml
```
In the `t2v_train.yaml` configuration file, you can specify the data, adjust the video-to-image ratio using `frame_lens`, and validate your ideas with different Diffusion settings, and so on.
- Before the training, you can download any of our open-source models for initialization. Our codebase supports custom initialization and `grad_scale` settings, all of which are included in the `Pretrain` item in yaml file.
- During the training, you can view the saved models and intermediate inference results in the `workspace/experiments/t2v_train`directory.
After the training is completed, you can perform inference on the model using the following command.
```
python inference.py --cfg configs/t2v_infer.yaml
```
Then you can find the videos you generated in the `workspace/experiments/test_img_01` directory. For specific configurations such as data, models, seed, etc., please refer to the `t2v_infer.yaml` file.
<!-- <table>
<center>
<tr>
<td ><center>
<video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441754174077.mp4"></video>
</center></td>
<td ><center>
<video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441138824052.mp4"></video>
</center></td>
</tr>
</center>
</table>
</center> -->
<table>
<center>
<tr>
<td ><center>
<image height="260" src="https://img.alicdn.com/imgextra/i4/O1CN01Ya2I5I25utrJwJ9Jf_!!6000000007587-2-tps-1280-720.png"></image>
</center></td>
<td ><center>
<image height="260" src="https://img.alicdn.com/imgextra/i3/O1CN01CrmYaz1zXBetmg3dd_!!6000000006723-2-tps-1280-720.png"></image>
</center></td>
</tr>
<tr>
<td ><center>
<p>Clike <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441754174077.mp4">HRER</a> to view the generated video.</p>
</center></td>
<td ><center>
<p>Clike <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441138824052.mp4">HRER</a> to view the generated video.</p>
</center></td>
</tr>
</center>
</table>
</center>
### (2) Run the I2VGen-XL model
(i) Download model and test data:
```
!pip install modelscope
from modelscope.hub.snapshot_download import snapshot_download
model_dir = snapshot_download('damo/I2VGen-XL', cache_dir='models/', revision='v1.0.0')
```
(ii) Run the following command:
```
python inference.py --cfg configs/i2vgen_xl_infer.yaml
```
In a few minutes, you can retrieve the high-definition video you wish to create from the `workspace/experiments/test_img_01` directory. At present, we find that the current model performs inadequately on **anime images** and **images with a black background** due to the lack of relevant training data. We are consistently working to optimize it.
<span style="color:red">Due to the compression of our video quality in GIF format, please click 'HRER' below to view the original video.</span>
<center>
<table>
<center>
<tr>
<td ><center>
<image height="260" src="https://img.alicdn.com/imgextra/i1/O1CN01CCEq7K1ZeLpNQqrWu_!!6000000003219-0-tps-1280-720.jpg"></image>
</center></td>
<td ><center>
<!-- <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442125067544.mp4"></video> -->
<image height="260" src="https://img.alicdn.com/imgextra/i4/O1CN01hIQcvG1spmQMLqBo0_!!6000000005816-1-tps-1280-704.gif"></image>
</center></td>
</tr>
<tr>
<td ><center>
<p>Input Image</p>
</center></td>
<td ><center>
<p>Clike <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442125067544.mp4">HRER</a> to view the generated video.</p>
</center></td>
</tr>
<tr>
<td ><center>
<image height="260" src="https://img.alicdn.com/imgextra/i4/O1CN01ZXY7UN23K8q4oQ3uG_!!6000000007236-2-tps-1280-720.png"></image>
</center></td>
<td ><center>
<!-- <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441385957074.mp4"></video> -->
<image height="260" src="https://img.alicdn.com/imgextra/i1/O1CN01iaSiiv1aJZURUEY53_!!6000000003309-1-tps-1280-704.gif"></image>
</center></td>
</tr>
<tr>
<td ><center>
<p>Input Image</p>
</center></td>
<td ><center>
<p>Clike <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441385957074.mp4">HRER</a> to view the generated video.</p>
</center></td>
</tr>
<tr>
<td ><center>
<image height="260" src="https://img.alicdn.com/imgextra/i3/O1CN01NHpVGl1oat4H54Hjf_!!6000000005242-2-tps-1280-720.png"></image>
</center></td>
<td ><center>
<!-- <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442102706767.mp4"></video> -->
<!-- <image muted="true" height="260" src="https://img.alicdn.com/imgextra/i4/O1CN01DgLj1T240jfpzKoaQ_!!6000000007329-1-tps-1280-704.gif"></image>
-->
<image height="260" src="https://img.alicdn.com/imgextra/i4/O1CN01DgLj1T240jfpzKoaQ_!!6000000007329-1-tps-1280-704.gif"></image>
</center></td>
</tr>
<tr>
<td ><center>
<p>Input Image</p>
</center></td>
<td ><center>
<p>Clike <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442102706767.mp4">HERE</a> to view the generated video.</p>
</center></td>
</tr>
<tr>
<td ><center>
<image height="260" src="https://img.alicdn.com/imgextra/i1/O1CN01odS61s1WW9tXen21S_!!6000000002795-0-tps-1280-720.jpg"></image>
</center></td>
<td ><center>
<!-- <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442163934688.mp4"></video> -->
<image height="260" src="https://img.alicdn.com/imgextra/i3/O1CN01Jyk1HT28JkZtpAtY6_!!6000000007912-1-tps-1280-704.gif"></image>
</center></td>
</tr>
<tr>
<td ><center>
<p>Input Image</p>
</center></td>
<td ><center>
<p>Clike <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442163934688.mp4">HERE</a> to view the generated video.</p>
</center></td>
</tr>
</center>
</table>
</center>
### (3) Other methods
In preparation.
## Customize your own approach
Our codebase essentially supports all the commonly used components in video generation. You can manage your experiments flexibly by adding corresponding registration classes, including `ENGINE, MODEL, DATASETS, EMBEDDER, AUTO_ENCODER, DISTRIBUTION, VISUAL, DIFFUSION, PRETRAIN`, and can be compatible with all our open-source algorithms according to your own needs. If you have any questions, feel free to give us your feedback at any time.
## BibTeX
If this repo is useful to you, please cite our corresponding technical paper.
```bibtex
@article{2023i2vgenxl,
title={I2VGen-XL: High-Quality Image-to-Video Synthesis via Cascaded Diffusion Models},
author={Zhang, Shiwei and Wang, Jiayu and Zhang, Yingya and Zhao, Kang and Yuan, Hangjie and Qing, Zhiwu and Wang, Xiang and Zhao, Deli and Zhou, Jingren},
booktitle={arXiv preprint arXiv:2311.04145},
year={2023}
}
@article{2023videocomposer,
title={VideoComposer: Compositional Video Synthesis with Motion Controllability},
author={Wang, Xiang and Yuan, Hangjie and Zhang, Shiwei and Chen, Dayou and Wang, Jiuniu, and Zhang, Yingya, and Shen, Yujun, and Zhao, Deli and Zhou, Jingren},
booktitle={arXiv preprint arXiv:2306.02018},
year={2023}
}
@article{wang2023modelscope,
title={Modelscope text-to-video technical report},
author={Wang, Jiuniu and Yuan, Hangjie and Chen, Dayou and Zhang, Yingya and Wang, Xiang and Zhang, Shiwei},
journal={arXiv preprint arXiv:2308.06571},
year={2023}
}
@article{dreamvideo,
title={DreamVideo: Composing Your Dream Videos with Customized Subject and Motion},
author={Wei, Yujie and Zhang, Shiwei and Qing, Zhiwu and Yuan, Hangjie and Liu, Zhiheng and Liu, Yu and Zhang, Yingya and Zhou, Jingren and Shan, Hongming},
journal={arXiv preprint arXiv:2312.04433},
year={2023}
}
@article{qing2023higen,
title={Hierarchical Spatio-temporal Decoupling for Text-to-Video Generation},
author={Qing, Zhiwu and Zhang, Shiwei and Wang, Jiayu and Wang, Xiang and Wei, Yujie and Zhang, Yingya and Gao, Changxin and Sang, Nong },
journal={arXiv preprint arXiv:2312.04483},
year={2023}
}
@article{wang2023videolcm,
title={VideoLCM: Video Latent Consistency Model},
author={Wang, Xiang and Zhang, Shiwei and Zhang, Han and Liu, Yu and Zhang, Yingya and Gao, Changxin and Sang, Nong },
journal={arXiv preprint arXiv:2312.09109},
year={2023}
}
```
## Disclaimer
This open-source model is trained with using [WebVid-10M](https://m-bain.github.io/webvid-dataset/) and [LAION-400M](https://laion.ai/blog/laion-400-open-dataset/) datasets and is intended for <strong>RESEARCH/NON-COMMERCIAL USE ONLY</strong>. |