--- license: mit --- # VGen ![figure1](source/VGen.jpg "figure1") VGen is an open-source video synthesis codebase developed by the Tongyi Lab of Alibaba Group, featuring state-of-the-art video generative models. This repository includes implementations of the following methods: - [I2VGen-xl: High-quality image-to-video synthesis via cascaded diffusion models](https://i2vgen-xl.github.io/) - [VideoComposer: Compositional Video Synthesis with Motion Controllability](https://videocomposer.github.io/) - [Hierarchical Spatio-temporal Decoupling for Text-to-Video Generation](https://higen-t2v.github.io/) - [A Recipe for Scaling up Text-to-Video Generation with Text-free Videos]() - [InstructVideo: Instructing Video Diffusion Models with Human Feedback]() - [DreamVideo: Composing Your Dream Videos with Customized Subject and Motion](https://dreamvideo-t2v.github.io/) - [VideoLCM: Video Latent Consistency Model](https://arxiv.org/abs/2312.09109) - [Modelscope text-to-video technical report](https://arxiv.org/abs/2308.06571) VGen can produce high-quality videos from the input text, images, desired motion, desired subjects, and even the feedback signals provided. It also offers a variety of commonly used video generation tools such as visualization, sampling, training, inference, join training using images and videos, acceleration, and more. [![YouTube](https://badges.aleen42.com/src/youtube.svg)](https://youtu.be/XUi0y7dxqEQ) ## 🔥News!!! - __[2023.12]__ We release the high-efficiency video generation method [VideoLCM](https://arxiv.org/abs/2312.09109) - __[2023.12]__ We release the code and model of I2VGen-XL and the ModelScope T2V - __[2023.12]__ We release the T2V method [HiGen](https://higen-t2v.github.io) and customizing T2V method [DreamVideo](https://dreamvideo-t2v.github.io). - __[2023.12]__ We write an [introduction docment](doc/introduction.pdf) for VGen and compare I2VGen-XL with SVD. - __[2023.11]__ We release a high-quality I2VGen-XL model, please refer to the [Webpage](https://i2vgen-xl.github.io) ## TODO - [x] Release the technical papers and webpage of [I2VGen-XL](doc/i2vgen-xl.md) - [x] Release the code and pretrained models that can generate 1280x720 videos - [ ] Release models optimized specifically for the human body and faces - [ ] Updated version can fully maintain the ID and capture large and accurate motions simultaneously - [ ] Release other methods and the corresponding models ## Preparation The main features of VGen are as follows: - Expandability, allowing for easy management of your own experiments. - Completeness, encompassing all common components for video generation. - Excellent performance, featuring powerful pre-trained models in multiple tasks. ### Installation ``` conda create -n vgen python=3.8 conda activate vgen pip install torch==1.12.0+cu113 torchvision==0.13.0+cu113 torchaudio==0.12.0 --extra-index-url https://download.pytorch.org/whl/cu113 pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple ``` ### Datasets We have provided a **demo dataset** that includes images and videos, along with their lists in ``data``. *Please note that the demo images used here are for testing purposes and were not included in the training.* ### Clone codeb ``` git clone https://github.com/damo-vilab/i2vgen-xl.git cd i2vgen-xl ``` ## Getting Started with VGen ### (1) Train your text-to-video model Executing the following command to enable distributed training is as easy as that. ``` python train_net.py --cfg configs/t2v_train.yaml ``` In the `t2v_train.yaml` configuration file, you can specify the data, adjust the video-to-image ratio using `frame_lens`, and validate your ideas with different Diffusion settings, and so on. - Before the training, you can download any of our open-source models for initialization. Our codebase supports custom initialization and `grad_scale` settings, all of which are included in the `Pretrain` item in yaml file. - During the training, you can view the saved models and intermediate inference results in the `workspace/experiments/t2v_train`directory. After the training is completed, you can perform inference on the model using the following command. ``` python inference.py --cfg configs/t2v_infer.yaml ``` Then you can find the videos you generated in the `workspace/experiments/test_img_01` directory. For specific configurations such as data, models, seed, etc., please refer to the `t2v_infer.yaml` file.
Clike HRER to view the generated video. |
Clike HRER to view the generated video. |
Input Image |
Clike HRER to view the generated video. |
Input Image |
Clike HRER to view the generated video. |
Input Image |
Clike HERE to view the generated video. |
Input Image |
Clike HERE to view the generated video. |