Update README.md
Browse filesupdate code example
README.md
CHANGED
@@ -30,21 +30,21 @@ You can use the raw model for optical character recognition (OCR) on text images
|
|
30 |
Here is how to use this model in PyTorch:
|
31 |
|
32 |
```python
|
33 |
-
from transformers import
|
34 |
import requests
|
35 |
from PIL import Image
|
36 |
|
37 |
-
processor =
|
38 |
-
model =
|
39 |
|
40 |
# load image from the IIIT-5k dataset
|
41 |
url = "https://i.postimg.cc/ZKwLg2Gw/367-14.png"
|
42 |
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
|
43 |
|
44 |
-
pixel_values = processor(image, return_tensors="pt").pixel_values
|
45 |
-
|
46 |
|
47 |
-
generated_text = processor.batch_decode(
|
48 |
```
|
49 |
|
50 |
### BibTeX entry and citation info
|
|
|
30 |
Here is how to use this model in PyTorch:
|
31 |
|
32 |
```python
|
33 |
+
from transformers import MgpstrProcessor, MgpstrForSceneTextRecognition
|
34 |
import requests
|
35 |
from PIL import Image
|
36 |
|
37 |
+
processor = MgpstrProcessor.from_pretrained('alibaba-damo/mgp-str-base')
|
38 |
+
model = MgpstrForSceneTextRecognition.from_pretrained('alibaba-damo/mgp-str-base')
|
39 |
|
40 |
# load image from the IIIT-5k dataset
|
41 |
url = "https://i.postimg.cc/ZKwLg2Gw/367-14.png"
|
42 |
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
|
43 |
|
44 |
+
pixel_values = processor(images=image, return_tensors="pt").pixel_values
|
45 |
+
outputs = model(pixel_values)
|
46 |
|
47 |
+
generated_text = processor.batch_decode(outputs.logits)['generated_text']
|
48 |
```
|
49 |
|
50 |
### BibTeX entry and citation info
|