linjinpeng
commited on
Commit
•
4049887
1
Parent(s):
a19eadb
fix checkpoint, ready to merge to diffusers
Browse files- config.json +0 -7
- controlnet_sd3.py +0 -552
- demo.py +0 -53
- diffusion_pytorch_model.safetensors +2 -2
- pipeline_sd3_controlnet_inpainting.py +0 -1333
config.json
CHANGED
@@ -4,13 +4,6 @@
|
|
4 |
"_name_or_path": "./model_hub_tmp_0/.",
|
5 |
"attention_head_dim": 64,
|
6 |
"caption_projection_dim": 1536,
|
7 |
-
"conditioning_channels": 3,
|
8 |
-
"conditioning_embedding_out_channels": [
|
9 |
-
16,
|
10 |
-
32,
|
11 |
-
96,
|
12 |
-
256
|
13 |
-
],
|
14 |
"in_channels": 16,
|
15 |
"joint_attention_dim": 4096,
|
16 |
"num_attention_heads": 24,
|
|
|
4 |
"_name_or_path": "./model_hub_tmp_0/.",
|
5 |
"attention_head_dim": 64,
|
6 |
"caption_projection_dim": 1536,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
"in_channels": 16,
|
8 |
"joint_attention_dim": 4096,
|
9 |
"num_attention_heads": 24,
|
controlnet_sd3.py
DELETED
@@ -1,552 +0,0 @@
|
|
1 |
-
# Copyright 2024 Stability AI, The HuggingFace Team and The InstantX Team. All rights reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
|
16 |
-
from dataclasses import dataclass
|
17 |
-
from typing import Any, Dict, List, Optional, Tuple, Union
|
18 |
-
|
19 |
-
import torch
|
20 |
-
import torch.nn as nn
|
21 |
-
|
22 |
-
import diffusers
|
23 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
24 |
-
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
|
25 |
-
from diffusers.models.attention import JointTransformerBlock
|
26 |
-
from diffusers.models.attention_processor import Attention, AttentionProcessor
|
27 |
-
from diffusers.models.modeling_utils import ModelMixin
|
28 |
-
from diffusers.utils import (
|
29 |
-
USE_PEFT_BACKEND,
|
30 |
-
is_torch_version,
|
31 |
-
logging,
|
32 |
-
scale_lora_layers,
|
33 |
-
unscale_lora_layers,
|
34 |
-
)
|
35 |
-
from diffusers.models.controlnet import BaseOutput, zero_module
|
36 |
-
from diffusers.models.embeddings import CombinedTimestepTextProjEmbeddings, PatchEmbed
|
37 |
-
from diffusers.models.transformers.transformer_2d import Transformer2DModelOutput
|
38 |
-
from torch.nn import functional as F
|
39 |
-
|
40 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
41 |
-
from packaging import version
|
42 |
-
|
43 |
-
class ControlNetConditioningEmbedding(nn.Module):
|
44 |
-
"""
|
45 |
-
Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
|
46 |
-
[11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
|
47 |
-
training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
|
48 |
-
convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
|
49 |
-
(activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
|
50 |
-
model) to encode image-space conditions ... into feature maps ..."
|
51 |
-
"""
|
52 |
-
|
53 |
-
def __init__(
|
54 |
-
self,
|
55 |
-
conditioning_embedding_channels: int,
|
56 |
-
conditioning_channels: int = 3,
|
57 |
-
block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
|
58 |
-
):
|
59 |
-
super().__init__()
|
60 |
-
|
61 |
-
self.conv_in = nn.Conv2d(
|
62 |
-
conditioning_channels, block_out_channels[0], kernel_size=3, padding=1
|
63 |
-
)
|
64 |
-
|
65 |
-
self.blocks = nn.ModuleList([])
|
66 |
-
|
67 |
-
for i in range(len(block_out_channels) - 1):
|
68 |
-
channel_in = block_out_channels[i]
|
69 |
-
channel_out = block_out_channels[i + 1]
|
70 |
-
self.blocks.append(
|
71 |
-
nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1)
|
72 |
-
)
|
73 |
-
self.blocks.append(
|
74 |
-
nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2)
|
75 |
-
)
|
76 |
-
|
77 |
-
self.conv_out = zero_module(
|
78 |
-
nn.Conv2d(
|
79 |
-
block_out_channels[-1],
|
80 |
-
conditioning_embedding_channels,
|
81 |
-
kernel_size=3,
|
82 |
-
padding=1,
|
83 |
-
)
|
84 |
-
)
|
85 |
-
|
86 |
-
def forward(self, conditioning):
|
87 |
-
embedding = self.conv_in(conditioning)
|
88 |
-
embedding = F.silu(embedding)
|
89 |
-
|
90 |
-
for block in self.blocks:
|
91 |
-
embedding = block(embedding)
|
92 |
-
embedding = F.silu(embedding)
|
93 |
-
|
94 |
-
embedding = self.conv_out(embedding)
|
95 |
-
|
96 |
-
return embedding
|
97 |
-
|
98 |
-
|
99 |
-
@dataclass
|
100 |
-
class SD3ControlNetOutput(BaseOutput):
|
101 |
-
controlnet_block_samples: Tuple[torch.Tensor]
|
102 |
-
|
103 |
-
|
104 |
-
class SD3ControlNetModel(
|
105 |
-
ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin
|
106 |
-
):
|
107 |
-
_supports_gradient_checkpointing = True
|
108 |
-
|
109 |
-
@register_to_config
|
110 |
-
def __init__(
|
111 |
-
self,
|
112 |
-
sample_size: int = 128,
|
113 |
-
patch_size: int = 2,
|
114 |
-
in_channels: int = 16,
|
115 |
-
num_layers: int = 18,
|
116 |
-
attention_head_dim: int = 64,
|
117 |
-
num_attention_heads: int = 18,
|
118 |
-
joint_attention_dim: int = 4096,
|
119 |
-
caption_projection_dim: int = 1152,
|
120 |
-
pooled_projection_dim: int = 2048,
|
121 |
-
out_channels: int = 16,
|
122 |
-
pos_embed_max_size: int = 96,
|
123 |
-
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (
|
124 |
-
16,
|
125 |
-
32,
|
126 |
-
96,
|
127 |
-
256,
|
128 |
-
),
|
129 |
-
conditioning_channels: int = 3,
|
130 |
-
):
|
131 |
-
"""
|
132 |
-
conditioning_channels: condition image pixel space channels
|
133 |
-
conditioning_embedding_out_channels: intermediate channels
|
134 |
-
|
135 |
-
"""
|
136 |
-
super().__init__()
|
137 |
-
default_out_channels = in_channels
|
138 |
-
self.out_channels = (
|
139 |
-
out_channels if out_channels is not None else default_out_channels
|
140 |
-
)
|
141 |
-
self.inner_dim = num_attention_heads * attention_head_dim
|
142 |
-
|
143 |
-
self.pos_embed = PatchEmbed(
|
144 |
-
height=sample_size,
|
145 |
-
width=sample_size,
|
146 |
-
patch_size=patch_size,
|
147 |
-
in_channels=in_channels,
|
148 |
-
embed_dim=self.inner_dim,
|
149 |
-
pos_embed_max_size=pos_embed_max_size, # hard-code for now.
|
150 |
-
)
|
151 |
-
self.time_text_embed = CombinedTimestepTextProjEmbeddings(
|
152 |
-
embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
|
153 |
-
)
|
154 |
-
self.context_embedder = nn.Linear(joint_attention_dim, caption_projection_dim)
|
155 |
-
|
156 |
-
# control net conditioning embedding
|
157 |
-
# self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
|
158 |
-
# conditioning_embedding_channels=default_out_channels,
|
159 |
-
# block_out_channels=conditioning_embedding_out_channels,
|
160 |
-
# conditioning_channels=conditioning_channels,
|
161 |
-
# )
|
162 |
-
|
163 |
-
# `attention_head_dim` is doubled to account for the mixing.
|
164 |
-
# It needs to crafted when we get the actual checkpoints.
|
165 |
-
self.transformer_blocks = nn.ModuleList(
|
166 |
-
[
|
167 |
-
JointTransformerBlock(
|
168 |
-
dim=self.inner_dim,
|
169 |
-
num_attention_heads=num_attention_heads,
|
170 |
-
attention_head_dim=attention_head_dim if version.parse(diffusers.__version__) >= version.parse('0.30.0.dev0') else self.inner_dim,
|
171 |
-
context_pre_only=False,
|
172 |
-
)
|
173 |
-
for _ in range(num_layers)
|
174 |
-
]
|
175 |
-
)
|
176 |
-
|
177 |
-
# controlnet_blocks
|
178 |
-
self.controlnet_blocks = nn.ModuleList([])
|
179 |
-
for _ in range(len(self.transformer_blocks)):
|
180 |
-
controlnet_block = zero_module(nn.Linear(self.inner_dim, self.inner_dim))
|
181 |
-
self.controlnet_blocks.append(controlnet_block)
|
182 |
-
|
183 |
-
# control condition embedding
|
184 |
-
pos_embed_cond = PatchEmbed(
|
185 |
-
height=sample_size,
|
186 |
-
width=sample_size,
|
187 |
-
patch_size=patch_size,
|
188 |
-
in_channels=in_channels + 1,
|
189 |
-
embed_dim=self.inner_dim,
|
190 |
-
pos_embed_type=None,
|
191 |
-
)
|
192 |
-
# pos_embed_cond = nn.Linear(in_channels + 1, self.inner_dim)
|
193 |
-
self.pos_embed_cond = zero_module(pos_embed_cond)
|
194 |
-
|
195 |
-
self.gradient_checkpointing = False
|
196 |
-
|
197 |
-
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
|
198 |
-
def enable_forward_chunking(
|
199 |
-
self, chunk_size: Optional[int] = None, dim: int = 0
|
200 |
-
) -> None:
|
201 |
-
"""
|
202 |
-
Sets the attention processor to use [feed forward
|
203 |
-
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
|
204 |
-
|
205 |
-
Parameters:
|
206 |
-
chunk_size (`int`, *optional*):
|
207 |
-
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
|
208 |
-
over each tensor of dim=`dim`.
|
209 |
-
dim (`int`, *optional*, defaults to `0`):
|
210 |
-
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
|
211 |
-
or dim=1 (sequence length).
|
212 |
-
"""
|
213 |
-
if dim not in [0, 1]:
|
214 |
-
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
|
215 |
-
|
216 |
-
# By default chunk size is 1
|
217 |
-
chunk_size = chunk_size or 1
|
218 |
-
|
219 |
-
def fn_recursive_feed_forward(
|
220 |
-
module: torch.nn.Module, chunk_size: int, dim: int
|
221 |
-
):
|
222 |
-
if hasattr(module, "set_chunk_feed_forward"):
|
223 |
-
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
|
224 |
-
|
225 |
-
for child in module.children():
|
226 |
-
fn_recursive_feed_forward(child, chunk_size, dim)
|
227 |
-
|
228 |
-
for module in self.children():
|
229 |
-
fn_recursive_feed_forward(module, chunk_size, dim)
|
230 |
-
|
231 |
-
@property
|
232 |
-
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
233 |
-
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
234 |
-
r"""
|
235 |
-
Returns:
|
236 |
-
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
237 |
-
indexed by its weight name.
|
238 |
-
"""
|
239 |
-
# set recursively
|
240 |
-
processors = {}
|
241 |
-
|
242 |
-
def fn_recursive_add_processors(
|
243 |
-
name: str,
|
244 |
-
module: torch.nn.Module,
|
245 |
-
processors: Dict[str, AttentionProcessor],
|
246 |
-
):
|
247 |
-
if hasattr(module, "get_processor"):
|
248 |
-
processors[f"{name}.processor"] = module.get_processor(
|
249 |
-
return_deprecated_lora=True
|
250 |
-
)
|
251 |
-
|
252 |
-
for sub_name, child in module.named_children():
|
253 |
-
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
254 |
-
|
255 |
-
return processors
|
256 |
-
|
257 |
-
for name, module in self.named_children():
|
258 |
-
fn_recursive_add_processors(name, module, processors)
|
259 |
-
|
260 |
-
return processors
|
261 |
-
|
262 |
-
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
263 |
-
def set_attn_processor(
|
264 |
-
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]
|
265 |
-
):
|
266 |
-
r"""
|
267 |
-
Sets the attention processor to use to compute attention.
|
268 |
-
|
269 |
-
Parameters:
|
270 |
-
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
271 |
-
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
272 |
-
for **all** `Attention` layers.
|
273 |
-
|
274 |
-
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
275 |
-
processor. This is strongly recommended when setting trainable attention processors.
|
276 |
-
|
277 |
-
"""
|
278 |
-
count = len(self.attn_processors.keys())
|
279 |
-
|
280 |
-
if isinstance(processor, dict) and len(processor) != count:
|
281 |
-
raise ValueError(
|
282 |
-
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
283 |
-
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
284 |
-
)
|
285 |
-
|
286 |
-
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
287 |
-
if hasattr(module, "set_processor"):
|
288 |
-
if not isinstance(processor, dict):
|
289 |
-
module.set_processor(processor)
|
290 |
-
else:
|
291 |
-
module.set_processor(processor.pop(f"{name}.processor"))
|
292 |
-
|
293 |
-
for sub_name, child in module.named_children():
|
294 |
-
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
295 |
-
|
296 |
-
for name, module in self.named_children():
|
297 |
-
fn_recursive_attn_processor(name, module, processor)
|
298 |
-
|
299 |
-
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
|
300 |
-
def fuse_qkv_projections(self):
|
301 |
-
"""
|
302 |
-
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
303 |
-
are fused. For cross-attention modules, key and value projection matrices are fused.
|
304 |
-
|
305 |
-
<Tip warning={true}>
|
306 |
-
|
307 |
-
This API is 🧪 experimental.
|
308 |
-
|
309 |
-
</Tip>
|
310 |
-
"""
|
311 |
-
self.original_attn_processors = None
|
312 |
-
|
313 |
-
for _, attn_processor in self.attn_processors.items():
|
314 |
-
if "Added" in str(attn_processor.__class__.__name__):
|
315 |
-
raise ValueError(
|
316 |
-
"`fuse_qkv_projections()` is not supported for models having added KV projections."
|
317 |
-
)
|
318 |
-
|
319 |
-
self.original_attn_processors = self.attn_processors
|
320 |
-
|
321 |
-
for module in self.modules():
|
322 |
-
if isinstance(module, Attention):
|
323 |
-
module.fuse_projections(fuse=True)
|
324 |
-
|
325 |
-
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
326 |
-
def unfuse_qkv_projections(self):
|
327 |
-
"""Disables the fused QKV projection if enabled.
|
328 |
-
|
329 |
-
<Tip warning={true}>
|
330 |
-
|
331 |
-
This API is 🧪 experimental.
|
332 |
-
|
333 |
-
</Tip>
|
334 |
-
|
335 |
-
"""
|
336 |
-
if self.original_attn_processors is not None:
|
337 |
-
self.set_attn_processor(self.original_attn_processors)
|
338 |
-
|
339 |
-
def _set_gradient_checkpointing(self, module, value=False):
|
340 |
-
if hasattr(module, "gradient_checkpointing"):
|
341 |
-
module.gradient_checkpointing = value
|
342 |
-
|
343 |
-
@classmethod
|
344 |
-
def from_transformer(
|
345 |
-
cls, transformer, num_layers=None, load_weights_from_transformer=True
|
346 |
-
):
|
347 |
-
config = transformer.config
|
348 |
-
config["num_layers"] = num_layers or config.num_layers
|
349 |
-
controlnet = cls(**config)
|
350 |
-
|
351 |
-
if load_weights_from_transformer:
|
352 |
-
controlnet.pos_embed.load_state_dict(
|
353 |
-
transformer.pos_embed.state_dict(), strict=False
|
354 |
-
)
|
355 |
-
controlnet.time_text_embed.load_state_dict(
|
356 |
-
transformer.time_text_embed.state_dict(), strict=False
|
357 |
-
)
|
358 |
-
controlnet.context_embedder.load_state_dict(
|
359 |
-
transformer.context_embedder.state_dict(), strict=False
|
360 |
-
)
|
361 |
-
controlnet.transformer_blocks.load_state_dict(
|
362 |
-
transformer.transformer_blocks.state_dict(), strict=False
|
363 |
-
)
|
364 |
-
|
365 |
-
return controlnet
|
366 |
-
|
367 |
-
def forward(
|
368 |
-
self,
|
369 |
-
hidden_states: torch.FloatTensor,
|
370 |
-
controlnet_cond: torch.Tensor,
|
371 |
-
conditioning_scale: float = 1.0,
|
372 |
-
encoder_hidden_states: torch.FloatTensor = None,
|
373 |
-
pooled_projections: torch.FloatTensor = None,
|
374 |
-
timestep: torch.LongTensor = None,
|
375 |
-
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
376 |
-
return_dict: bool = True,
|
377 |
-
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
378 |
-
"""
|
379 |
-
The [`SD3Transformer2DModel`] forward method.
|
380 |
-
|
381 |
-
Args:
|
382 |
-
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
383 |
-
Input `hidden_states`.
|
384 |
-
controlnet_cond (`torch.Tensor`):
|
385 |
-
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
386 |
-
conditioning_scale (`float`, defaults to `1.0`):
|
387 |
-
The scale factor for ControlNet outputs.
|
388 |
-
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
389 |
-
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
390 |
-
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
391 |
-
from the embeddings of input conditions.
|
392 |
-
timestep ( `torch.LongTensor`):
|
393 |
-
Used to indicate denoising step.
|
394 |
-
joint_attention_kwargs (`dict`, *optional*):
|
395 |
-
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
396 |
-
`self.processor` in
|
397 |
-
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
398 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
399 |
-
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
400 |
-
tuple.
|
401 |
-
|
402 |
-
Returns:
|
403 |
-
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
404 |
-
`tuple` where the first element is the sample tensor.
|
405 |
-
"""
|
406 |
-
if joint_attention_kwargs is not None:
|
407 |
-
joint_attention_kwargs = joint_attention_kwargs.copy()
|
408 |
-
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
409 |
-
else:
|
410 |
-
lora_scale = 1.0
|
411 |
-
|
412 |
-
if USE_PEFT_BACKEND:
|
413 |
-
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
414 |
-
scale_lora_layers(self, lora_scale)
|
415 |
-
else:
|
416 |
-
if (
|
417 |
-
joint_attention_kwargs is not None
|
418 |
-
and joint_attention_kwargs.get("scale", None) is not None
|
419 |
-
):
|
420 |
-
logger.warning(
|
421 |
-
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
422 |
-
)
|
423 |
-
|
424 |
-
height, width = hidden_states.shape[-2:]
|
425 |
-
|
426 |
-
hidden_states = self.pos_embed(
|
427 |
-
hidden_states
|
428 |
-
) # takes care of adding positional embeddings too. b,c,H,W -> b, N, C
|
429 |
-
temb = self.time_text_embed(timestep, pooled_projections)
|
430 |
-
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
431 |
-
|
432 |
-
# add condition
|
433 |
-
hidden_states = hidden_states + self.pos_embed_cond(controlnet_cond)
|
434 |
-
|
435 |
-
block_res_samples = ()
|
436 |
-
|
437 |
-
for block in self.transformer_blocks:
|
438 |
-
if self.training and self.gradient_checkpointing:
|
439 |
-
|
440 |
-
def create_custom_forward(module, return_dict=None):
|
441 |
-
def custom_forward(*inputs):
|
442 |
-
if return_dict is not None:
|
443 |
-
return module(*inputs, return_dict=return_dict)
|
444 |
-
else:
|
445 |
-
return module(*inputs)
|
446 |
-
|
447 |
-
return custom_forward
|
448 |
-
|
449 |
-
ckpt_kwargs: Dict[str, Any] = (
|
450 |
-
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
451 |
-
)
|
452 |
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
453 |
-
create_custom_forward(block),
|
454 |
-
hidden_states,
|
455 |
-
encoder_hidden_states,
|
456 |
-
temb,
|
457 |
-
**ckpt_kwargs,
|
458 |
-
)
|
459 |
-
|
460 |
-
else:
|
461 |
-
encoder_hidden_states, hidden_states = block(
|
462 |
-
hidden_states=hidden_states,
|
463 |
-
encoder_hidden_states=encoder_hidden_states,
|
464 |
-
temb=temb,
|
465 |
-
)
|
466 |
-
|
467 |
-
block_res_samples = block_res_samples + (hidden_states,)
|
468 |
-
|
469 |
-
controlnet_block_res_samples = ()
|
470 |
-
for block_res_sample, controlnet_block in zip(
|
471 |
-
block_res_samples, self.controlnet_blocks
|
472 |
-
):
|
473 |
-
block_res_sample = controlnet_block(block_res_sample)
|
474 |
-
controlnet_block_res_samples = controlnet_block_res_samples + (
|
475 |
-
block_res_sample,
|
476 |
-
)
|
477 |
-
|
478 |
-
# 6. scaling
|
479 |
-
controlnet_block_res_samples = [
|
480 |
-
sample * conditioning_scale for sample in controlnet_block_res_samples
|
481 |
-
]
|
482 |
-
|
483 |
-
if USE_PEFT_BACKEND:
|
484 |
-
# remove `lora_scale` from each PEFT layer
|
485 |
-
unscale_lora_layers(self, lora_scale)
|
486 |
-
|
487 |
-
if not return_dict:
|
488 |
-
return (controlnet_block_res_samples,)
|
489 |
-
|
490 |
-
return SD3ControlNetOutput(
|
491 |
-
controlnet_block_samples=controlnet_block_res_samples
|
492 |
-
)
|
493 |
-
|
494 |
-
def invert_copy_paste(self, controlnet_block_samples):
|
495 |
-
controlnet_block_samples = controlnet_block_samples + controlnet_block_samples[::-1]
|
496 |
-
return controlnet_block_samples
|
497 |
-
|
498 |
-
class SD3MultiControlNetModel(ModelMixin):
|
499 |
-
r"""
|
500 |
-
`SD3ControlNetModel` wrapper class for Multi-SD3ControlNet
|
501 |
-
|
502 |
-
This module is a wrapper for multiple instances of the `SD3ControlNetModel`. The `forward()` API is designed to be
|
503 |
-
compatible with `SD3ControlNetModel`.
|
504 |
-
|
505 |
-
Args:
|
506 |
-
controlnets (`List[SD3ControlNetModel]`):
|
507 |
-
Provides additional conditioning to the unet during the denoising process. You must set multiple
|
508 |
-
`SD3ControlNetModel` as a list.
|
509 |
-
"""
|
510 |
-
|
511 |
-
def __init__(self, controlnets):
|
512 |
-
super().__init__()
|
513 |
-
self.nets = nn.ModuleList(controlnets)
|
514 |
-
|
515 |
-
def forward(
|
516 |
-
self,
|
517 |
-
hidden_states: torch.FloatTensor,
|
518 |
-
controlnet_cond: List[torch.tensor],
|
519 |
-
conditioning_scale: List[float],
|
520 |
-
pooled_projections: torch.FloatTensor,
|
521 |
-
encoder_hidden_states: torch.FloatTensor = None,
|
522 |
-
timestep: torch.LongTensor = None,
|
523 |
-
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
524 |
-
return_dict: bool = True,
|
525 |
-
) -> Union[SD3ControlNetOutput, Tuple]:
|
526 |
-
for i, (image, scale, controlnet) in enumerate(
|
527 |
-
zip(controlnet_cond, conditioning_scale, self.nets)
|
528 |
-
):
|
529 |
-
block_samples = controlnet(
|
530 |
-
hidden_states=hidden_states,
|
531 |
-
timestep=timestep,
|
532 |
-
encoder_hidden_states=encoder_hidden_states,
|
533 |
-
pooled_projections=pooled_projections,
|
534 |
-
controlnet_cond=image,
|
535 |
-
conditioning_scale=scale,
|
536 |
-
joint_attention_kwargs=joint_attention_kwargs,
|
537 |
-
return_dict=return_dict,
|
538 |
-
)
|
539 |
-
|
540 |
-
# merge samples
|
541 |
-
if i == 0:
|
542 |
-
control_block_samples = block_samples
|
543 |
-
else:
|
544 |
-
control_block_samples = [
|
545 |
-
control_block_sample + block_sample
|
546 |
-
for control_block_sample, block_sample in zip(
|
547 |
-
control_block_samples[0], block_samples[0]
|
548 |
-
)
|
549 |
-
]
|
550 |
-
control_block_samples = (tuple(control_block_samples),)
|
551 |
-
|
552 |
-
return control_block_samples
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
demo.py
DELETED
@@ -1,53 +0,0 @@
|
|
1 |
-
from diffusers.utils import load_image, check_min_version
|
2 |
-
import torch
|
3 |
-
|
4 |
-
# Local File
|
5 |
-
from pipeline_sd3_controlnet_inpainting import StableDiffusion3ControlNetInpaintingPipeline, one_image_and_mask
|
6 |
-
from controlnet_sd3 import SD3ControlNetModel
|
7 |
-
|
8 |
-
check_min_version("0.29.2")
|
9 |
-
|
10 |
-
# Build model
|
11 |
-
controlnet = SD3ControlNetModel.from_pretrained(
|
12 |
-
"alimama-creative/SD3-Controlnet-Inpainting",
|
13 |
-
use_safetensors=True,
|
14 |
-
)
|
15 |
-
pipe = StableDiffusion3ControlNetInpaintingPipeline.from_pretrained(
|
16 |
-
"stabilityai/stable-diffusion-3-medium-diffusers",
|
17 |
-
controlnet=controlnet,
|
18 |
-
torch_dtype=torch.float16,
|
19 |
-
)
|
20 |
-
pipe.text_encoder.to(torch.float16)
|
21 |
-
pipe.controlnet.to(torch.float16)
|
22 |
-
pipe.to("cuda")
|
23 |
-
|
24 |
-
# Load image
|
25 |
-
image = load_image(
|
26 |
-
"https://huggingface.co/alimama-creative/SD3-Controlnet-Inpainting/blob/main/images/prod.png"
|
27 |
-
)
|
28 |
-
mask = load_image(
|
29 |
-
"https://huggingface.co/alimama-creative/SD3-Controlnet-Inpainting/blob/main/images/mask.jpeg"
|
30 |
-
)
|
31 |
-
|
32 |
-
# Set args
|
33 |
-
width = 1024
|
34 |
-
height = 1024
|
35 |
-
prompt="a woman wearing a white jacket, black hat and black pants is standing in a field, the hat writes SD3"
|
36 |
-
generator = torch.Generator(device="cuda").manual_seed(24)
|
37 |
-
input_dict = one_image_and_mask(image, mask, size=(width, height), latent_scale=pipe.vae_scale_factor, invert_mask = True)
|
38 |
-
|
39 |
-
# Inference
|
40 |
-
res_image = pipe(
|
41 |
-
negative_prompt='deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW',
|
42 |
-
prompt=prompt,
|
43 |
-
height=height,
|
44 |
-
width=width,
|
45 |
-
control_image= input_dict['pil_masked_image'], # H, W, C,
|
46 |
-
control_mask=input_dict["mask"] > 0.5, # B,1,H,W
|
47 |
-
num_inference_steps=28,
|
48 |
-
generator=generator,
|
49 |
-
controlnet_conditioning_scale=0.95,
|
50 |
-
guidance_scale=7,
|
51 |
-
).images[0]
|
52 |
-
|
53 |
-
res_image.save(f'res.png')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusion_pytorch_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7e2bcf98ed0989558dd05d857cc49c0aff14dfa3197050d65e51a9d37008dde
|
3 |
+
size 4160564288
|
pipeline_sd3_controlnet_inpainting.py
DELETED
@@ -1,1333 +0,0 @@
|
|
1 |
-
# Copyright 2024 Stability AI, The HuggingFace Team and The InstantX Team. All rights reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
import inspect
|
16 |
-
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
17 |
-
|
18 |
-
import torch
|
19 |
-
from transformers import (
|
20 |
-
CLIPTextModelWithProjection,
|
21 |
-
CLIPTokenizer,
|
22 |
-
T5EncoderModel,
|
23 |
-
T5TokenizerFast,
|
24 |
-
)
|
25 |
-
|
26 |
-
from PIL import Image, ImageOps
|
27 |
-
import numpy as np
|
28 |
-
import os
|
29 |
-
from torchvision.transforms import v2
|
30 |
-
|
31 |
-
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
32 |
-
from diffusers.loaders import FromSingleFileMixin, SD3LoraLoaderMixin
|
33 |
-
from diffusers.models.autoencoders import AutoencoderKL
|
34 |
-
from diffusers.models.transformers import SD3Transformer2DModel
|
35 |
-
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
36 |
-
from diffusers.utils import (
|
37 |
-
is_torch_xla_available,
|
38 |
-
logging,
|
39 |
-
replace_example_docstring,
|
40 |
-
)
|
41 |
-
from diffusers.utils.torch_utils import randn_tensor
|
42 |
-
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
43 |
-
from diffusers.pipelines.stable_diffusion_3.pipeline_output import (
|
44 |
-
StableDiffusion3PipelineOutput,
|
45 |
-
)
|
46 |
-
from torchvision.transforms.functional import resize, InterpolationMode
|
47 |
-
|
48 |
-
from controlnet_sd3 import SD3ControlNetModel, SD3MultiControlNetModel
|
49 |
-
|
50 |
-
if is_torch_xla_available():
|
51 |
-
import torch_xla.core.xla_model as xm
|
52 |
-
|
53 |
-
XLA_AVAILABLE = True
|
54 |
-
else:
|
55 |
-
XLA_AVAILABLE = False
|
56 |
-
|
57 |
-
|
58 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
59 |
-
|
60 |
-
EXAMPLE_DOC_STRING = """
|
61 |
-
Examples:
|
62 |
-
```py
|
63 |
-
>>> import torch
|
64 |
-
>>> from diffusers import StableDiffusion3ControlNetPipeline
|
65 |
-
>>> from diffusers.models import SD3ControlNetModel, SD3MultiControlNetModel
|
66 |
-
>>> from diffusers.utils import load_image
|
67 |
-
|
68 |
-
>>> controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny", torch_dtype=torch.float16)
|
69 |
-
|
70 |
-
>>> pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
|
71 |
-
... "stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16
|
72 |
-
... )
|
73 |
-
>>> pipe.to("cuda")
|
74 |
-
>>> control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")
|
75 |
-
>>> prompt = "A girl holding a sign that says InstantX"
|
76 |
-
>>> image = pipe(prompt, control_image=control_image, controlnet_conditioning_scale=0.7).images[0]
|
77 |
-
>>> image.save("sd3.png")
|
78 |
-
```
|
79 |
-
"""
|
80 |
-
|
81 |
-
def one_image_and_mask(image, mask, size = None, latent_scale = 8 , invert_mask = False):
|
82 |
-
'''
|
83 |
-
Image : PIL Image, Torch Tensor [-1, 1], Path, B,C,H,W
|
84 |
-
Mask : PIL Image , Torch Tensor [0, 1], Path, B,1,H,W
|
85 |
-
'''
|
86 |
-
# size = (W, H)
|
87 |
-
if size is not None:
|
88 |
-
if not ( type(size) == list or type(size) == tuple):
|
89 |
-
size = (size, size)
|
90 |
-
|
91 |
-
# Get image @ torch tensor
|
92 |
-
if type(image) == str and os.path.exists(image):
|
93 |
-
image = Image.open(image)
|
94 |
-
|
95 |
-
if isinstance(image, Image.Image):
|
96 |
-
image = image.convert("RGB")
|
97 |
-
if size is not None:
|
98 |
-
image = image.resize(size, Image.Resampling.LANCZOS)
|
99 |
-
pil_image = image
|
100 |
-
image_arr = np.array(image)
|
101 |
-
assert image_arr.ndim == 3
|
102 |
-
assert image_arr.shape[2] == 3
|
103 |
-
th_image = torch.from_numpy(image_arr).float() / 127. - 1
|
104 |
-
th_image = th_image.permute(2, 0, 1)
|
105 |
-
else:
|
106 |
-
th_image = image
|
107 |
-
pil_image = None
|
108 |
-
|
109 |
-
# Get BCHW
|
110 |
-
assert isinstance(th_image, torch.Tensor)
|
111 |
-
if len(th_image.shape) == 3:
|
112 |
-
th_image = th_image.unsqueeze(0)
|
113 |
-
H, W = th_image.shape[-2:]
|
114 |
-
assert H % 8 == 0 and W % 8 == 0
|
115 |
-
|
116 |
-
# Get mask @ torch tensor
|
117 |
-
if type(mask) == str and os.path.exists(mask):
|
118 |
-
mask = Image.open(mask)
|
119 |
-
|
120 |
-
if isinstance(mask, Image.Image):
|
121 |
-
mask = mask.convert("L")
|
122 |
-
if invert_mask:
|
123 |
-
mask = ImageOps.invert(mask)
|
124 |
-
mask = mask.resize((W, H), Image.Resampling.LANCZOS)
|
125 |
-
pil_mask = mask
|
126 |
-
mask_arr = np.array(mask)
|
127 |
-
if mask_arr.ndim == 3 and mask_arr.shape[2] == 3:
|
128 |
-
mask_arr = mask_arr[:, :, 0] # H, W
|
129 |
-
th_mask = torch.from_numpy(mask_arr).float() / 255.
|
130 |
-
th_mask = th_mask.unsqueeze(0)
|
131 |
-
else:
|
132 |
-
th_mask = mask
|
133 |
-
pil_mask = None
|
134 |
-
|
135 |
-
assert isinstance(th_mask, torch.Tensor)
|
136 |
-
if len(th_mask.shape) == 3:
|
137 |
-
th_mask = th_mask.unsqueeze(0)
|
138 |
-
|
139 |
-
# Get mask at latent space
|
140 |
-
th_mask_latent = torch.nn.functional.interpolate(
|
141 |
-
th_mask, size=(H // latent_scale, W // latent_scale), mode="bilinear", antialias=True
|
142 |
-
)
|
143 |
-
|
144 |
-
# Get masked image for vae-cond
|
145 |
-
masked_image = th_image.clone()
|
146 |
-
masked_image[(th_mask < 0.5).repeat(1,3,1,1)] = - 1. # set 0. like power paint @ https://github.com/open-mmlab/PowerPaint/blob/main/powerpaint/pipelines/pipeline_PowerPaint.py
|
147 |
-
|
148 |
-
# Get pil masked image
|
149 |
-
pil_masked_image = v2.ToPILImage()((masked_image/2 + 1/2).clip(0, 1).squeeze(0))
|
150 |
-
|
151 |
-
# Get masked image
|
152 |
-
return {
|
153 |
-
'image': th_image,
|
154 |
-
'mask': th_mask,
|
155 |
-
'mask_latent': th_mask_latent,
|
156 |
-
'masked_image': masked_image,
|
157 |
-
'pil_image': pil_image,
|
158 |
-
'pil_mask': pil_mask,
|
159 |
-
'pil_masked_image': pil_masked_image
|
160 |
-
}
|
161 |
-
|
162 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
163 |
-
def retrieve_timesteps(
|
164 |
-
scheduler,
|
165 |
-
num_inference_steps: Optional[int] = None,
|
166 |
-
device: Optional[Union[str, torch.device]] = None,
|
167 |
-
timesteps: Optional[List[int]] = None,
|
168 |
-
sigmas: Optional[List[float]] = None,
|
169 |
-
**kwargs,
|
170 |
-
):
|
171 |
-
"""
|
172 |
-
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
173 |
-
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
174 |
-
|
175 |
-
Args:
|
176 |
-
scheduler (`SchedulerMixin`):
|
177 |
-
The scheduler to get timesteps from.
|
178 |
-
num_inference_steps (`int`):
|
179 |
-
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
180 |
-
must be `None`.
|
181 |
-
device (`str` or `torch.device`, *optional*):
|
182 |
-
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
183 |
-
timesteps (`List[int]`, *optional*):
|
184 |
-
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
185 |
-
`num_inference_steps` and `sigmas` must be `None`.
|
186 |
-
sigmas (`List[float]`, *optional*):
|
187 |
-
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
188 |
-
`num_inference_steps` and `timesteps` must be `None`.
|
189 |
-
|
190 |
-
Returns:
|
191 |
-
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
192 |
-
second element is the number of inference steps.
|
193 |
-
"""
|
194 |
-
if timesteps is not None and sigmas is not None:
|
195 |
-
raise ValueError(
|
196 |
-
"Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
|
197 |
-
)
|
198 |
-
if timesteps is not None:
|
199 |
-
accepts_timesteps = "timesteps" in set(
|
200 |
-
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
201 |
-
)
|
202 |
-
if not accepts_timesteps:
|
203 |
-
raise ValueError(
|
204 |
-
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
205 |
-
f" timestep schedules. Please check whether you are using the correct scheduler."
|
206 |
-
)
|
207 |
-
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
208 |
-
timesteps = scheduler.timesteps
|
209 |
-
num_inference_steps = len(timesteps)
|
210 |
-
elif sigmas is not None:
|
211 |
-
accept_sigmas = "sigmas" in set(
|
212 |
-
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
213 |
-
)
|
214 |
-
if not accept_sigmas:
|
215 |
-
raise ValueError(
|
216 |
-
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
217 |
-
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
218 |
-
)
|
219 |
-
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
220 |
-
timesteps = scheduler.timesteps
|
221 |
-
num_inference_steps = len(timesteps)
|
222 |
-
else:
|
223 |
-
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
224 |
-
timesteps = scheduler.timesteps
|
225 |
-
return timesteps, num_inference_steps
|
226 |
-
|
227 |
-
|
228 |
-
class StableDiffusion3ControlNetInpaintingPipeline(
|
229 |
-
DiffusionPipeline, SD3LoraLoaderMixin, FromSingleFileMixin
|
230 |
-
):
|
231 |
-
r"""
|
232 |
-
Args:
|
233 |
-
transformer ([`SD3Transformer2DModel`]):
|
234 |
-
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
|
235 |
-
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
236 |
-
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
237 |
-
vae ([`AutoencoderKL`]):
|
238 |
-
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
239 |
-
text_encoder ([`CLIPTextModelWithProjection`]):
|
240 |
-
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
241 |
-
specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant,
|
242 |
-
with an additional added projection layer that is initialized with a diagonal matrix with the `hidden_size`
|
243 |
-
as its dimension.
|
244 |
-
text_encoder_2 ([`CLIPTextModelWithProjection`]):
|
245 |
-
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
246 |
-
specifically the
|
247 |
-
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
248 |
-
variant.
|
249 |
-
text_encoder_3 ([`T5EncoderModel`]):
|
250 |
-
Frozen text-encoder. Stable Diffusion 3 uses
|
251 |
-
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
|
252 |
-
[t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
|
253 |
-
tokenizer (`CLIPTokenizer`):
|
254 |
-
Tokenizer of class
|
255 |
-
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
256 |
-
tokenizer_2 (`CLIPTokenizer`):
|
257 |
-
Second Tokenizer of class
|
258 |
-
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
259 |
-
tokenizer_3 (`T5TokenizerFast`):
|
260 |
-
Tokenizer of class
|
261 |
-
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
|
262 |
-
controlnet ([`SD3ControlNetModel`] or `List[SD3ControlNetModel]` or [`SD3MultiControlNetModel`]):
|
263 |
-
Provides additional conditioning to the `unet` during the denoising process. If you set multiple
|
264 |
-
ControlNets as a list, the outputs from each ControlNet are added together to create one combined
|
265 |
-
additional conditioning.
|
266 |
-
"""
|
267 |
-
|
268 |
-
model_cpu_offload_seq = (
|
269 |
-
"text_encoder->text_encoder_2->text_encoder_3->transformer->vae"
|
270 |
-
)
|
271 |
-
_optional_components = []
|
272 |
-
_callback_tensor_inputs = [
|
273 |
-
"latents",
|
274 |
-
"prompt_embeds",
|
275 |
-
"negative_prompt_embeds",
|
276 |
-
"negative_pooled_prompt_embeds",
|
277 |
-
]
|
278 |
-
|
279 |
-
def __init__(
|
280 |
-
self,
|
281 |
-
transformer: SD3Transformer2DModel,
|
282 |
-
scheduler: FlowMatchEulerDiscreteScheduler,
|
283 |
-
vae: AutoencoderKL,
|
284 |
-
text_encoder: CLIPTextModelWithProjection,
|
285 |
-
tokenizer: CLIPTokenizer,
|
286 |
-
text_encoder_2: CLIPTextModelWithProjection,
|
287 |
-
tokenizer_2: CLIPTokenizer,
|
288 |
-
text_encoder_3: T5EncoderModel,
|
289 |
-
tokenizer_3: T5TokenizerFast,
|
290 |
-
controlnet: Union[
|
291 |
-
SD3ControlNetModel,
|
292 |
-
List[SD3ControlNetModel],
|
293 |
-
Tuple[SD3ControlNetModel],
|
294 |
-
SD3MultiControlNetModel,
|
295 |
-
],
|
296 |
-
):
|
297 |
-
super().__init__()
|
298 |
-
|
299 |
-
self.register_modules(
|
300 |
-
vae=vae,
|
301 |
-
text_encoder=text_encoder,
|
302 |
-
text_encoder_2=text_encoder_2,
|
303 |
-
text_encoder_3=text_encoder_3,
|
304 |
-
tokenizer=tokenizer,
|
305 |
-
tokenizer_2=tokenizer_2,
|
306 |
-
tokenizer_3=tokenizer_3,
|
307 |
-
transformer=transformer,
|
308 |
-
scheduler=scheduler,
|
309 |
-
controlnet=controlnet,
|
310 |
-
)
|
311 |
-
self.vae_scale_factor = (
|
312 |
-
2 ** (len(self.vae.config.block_out_channels) - 1)
|
313 |
-
if hasattr(self, "vae") and self.vae is not None
|
314 |
-
else 8
|
315 |
-
)
|
316 |
-
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
317 |
-
self.control_image_processor = VaeImageProcessor(
|
318 |
-
vae_scale_factor=self.vae_scale_factor,
|
319 |
-
do_convert_rgb=True,
|
320 |
-
do_normalize=False,
|
321 |
-
)
|
322 |
-
self.tokenizer_max_length = (
|
323 |
-
self.tokenizer.model_max_length
|
324 |
-
if hasattr(self, "tokenizer") and self.tokenizer is not None
|
325 |
-
else 77
|
326 |
-
)
|
327 |
-
self.default_sample_size = (
|
328 |
-
self.transformer.config.sample_size
|
329 |
-
if hasattr(self, "transformer") and self.transformer is not None
|
330 |
-
else 128
|
331 |
-
)
|
332 |
-
|
333 |
-
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_t5_prompt_embeds
|
334 |
-
def _get_t5_prompt_embeds(
|
335 |
-
self,
|
336 |
-
prompt: Union[str, List[str]] = None,
|
337 |
-
num_images_per_prompt: int = 1,
|
338 |
-
device: Optional[torch.device] = None,
|
339 |
-
dtype: Optional[torch.dtype] = None,
|
340 |
-
):
|
341 |
-
device = device or self._execution_device
|
342 |
-
dtype = dtype or self.text_encoder.dtype
|
343 |
-
|
344 |
-
prompt = [prompt] if isinstance(prompt, str) else prompt
|
345 |
-
batch_size = len(prompt)
|
346 |
-
|
347 |
-
if self.text_encoder_3 is None:
|
348 |
-
return torch.zeros(
|
349 |
-
(
|
350 |
-
batch_size,
|
351 |
-
self.tokenizer_max_length,
|
352 |
-
self.transformer.config.joint_attention_dim,
|
353 |
-
),
|
354 |
-
device=device,
|
355 |
-
dtype=dtype,
|
356 |
-
)
|
357 |
-
|
358 |
-
text_inputs = self.tokenizer_3(
|
359 |
-
prompt,
|
360 |
-
padding="max_length",
|
361 |
-
max_length=self.tokenizer_max_length,
|
362 |
-
truncation=True,
|
363 |
-
add_special_tokens=True,
|
364 |
-
return_tensors="pt",
|
365 |
-
)
|
366 |
-
text_input_ids = text_inputs.input_ids
|
367 |
-
untruncated_ids = self.tokenizer_3(
|
368 |
-
prompt, padding="longest", return_tensors="pt"
|
369 |
-
).input_ids
|
370 |
-
|
371 |
-
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
372 |
-
text_input_ids, untruncated_ids
|
373 |
-
):
|
374 |
-
removed_text = self.tokenizer_3.batch_decode(
|
375 |
-
untruncated_ids[:, self.tokenizer_max_length - 1 : -1]
|
376 |
-
)
|
377 |
-
logger.warning(
|
378 |
-
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
379 |
-
f" {self.tokenizer_max_length} tokens: {removed_text}"
|
380 |
-
)
|
381 |
-
|
382 |
-
prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0]
|
383 |
-
|
384 |
-
dtype = self.text_encoder_3.dtype
|
385 |
-
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
386 |
-
|
387 |
-
_, seq_len, _ = prompt_embeds.shape
|
388 |
-
|
389 |
-
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
390 |
-
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
391 |
-
prompt_embeds = prompt_embeds.view(
|
392 |
-
batch_size * num_images_per_prompt, seq_len, -1
|
393 |
-
)
|
394 |
-
|
395 |
-
return prompt_embeds
|
396 |
-
|
397 |
-
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_clip_prompt_embeds
|
398 |
-
def _get_clip_prompt_embeds(
|
399 |
-
self,
|
400 |
-
prompt: Union[str, List[str]],
|
401 |
-
num_images_per_prompt: int = 1,
|
402 |
-
device: Optional[torch.device] = None,
|
403 |
-
clip_skip: Optional[int] = None,
|
404 |
-
clip_model_index: int = 0,
|
405 |
-
):
|
406 |
-
device = device or self._execution_device
|
407 |
-
|
408 |
-
clip_tokenizers = [self.tokenizer, self.tokenizer_2]
|
409 |
-
clip_text_encoders = [self.text_encoder, self.text_encoder_2]
|
410 |
-
|
411 |
-
tokenizer = clip_tokenizers[clip_model_index]
|
412 |
-
text_encoder = clip_text_encoders[clip_model_index]
|
413 |
-
|
414 |
-
prompt = [prompt] if isinstance(prompt, str) else prompt
|
415 |
-
batch_size = len(prompt)
|
416 |
-
|
417 |
-
text_inputs = tokenizer(
|
418 |
-
prompt,
|
419 |
-
padding="max_length",
|
420 |
-
max_length=self.tokenizer_max_length,
|
421 |
-
truncation=True,
|
422 |
-
return_tensors="pt",
|
423 |
-
)
|
424 |
-
|
425 |
-
text_input_ids = text_inputs.input_ids
|
426 |
-
untruncated_ids = tokenizer(
|
427 |
-
prompt, padding="longest", return_tensors="pt"
|
428 |
-
).input_ids
|
429 |
-
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
430 |
-
text_input_ids, untruncated_ids
|
431 |
-
):
|
432 |
-
removed_text = tokenizer.batch_decode(
|
433 |
-
untruncated_ids[:, self.tokenizer_max_length - 1 : -1]
|
434 |
-
)
|
435 |
-
logger.warning(
|
436 |
-
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
437 |
-
f" {self.tokenizer_max_length} tokens: {removed_text}"
|
438 |
-
)
|
439 |
-
prompt_embeds = text_encoder(
|
440 |
-
text_input_ids.to(device), output_hidden_states=True
|
441 |
-
)
|
442 |
-
pooled_prompt_embeds = prompt_embeds[0]
|
443 |
-
|
444 |
-
if clip_skip is None:
|
445 |
-
prompt_embeds = prompt_embeds.hidden_states[-2]
|
446 |
-
else:
|
447 |
-
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
|
448 |
-
|
449 |
-
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
450 |
-
|
451 |
-
_, seq_len, _ = prompt_embeds.shape
|
452 |
-
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
453 |
-
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
454 |
-
prompt_embeds = prompt_embeds.view(
|
455 |
-
batch_size * num_images_per_prompt, seq_len, -1
|
456 |
-
)
|
457 |
-
|
458 |
-
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
459 |
-
pooled_prompt_embeds = pooled_prompt_embeds.view(
|
460 |
-
batch_size * num_images_per_prompt, -1
|
461 |
-
)
|
462 |
-
|
463 |
-
return prompt_embeds, pooled_prompt_embeds
|
464 |
-
|
465 |
-
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.encode_prompt
|
466 |
-
def encode_prompt(
|
467 |
-
self,
|
468 |
-
prompt: Union[str, List[str]],
|
469 |
-
prompt_2: Union[str, List[str]],
|
470 |
-
prompt_3: Union[str, List[str]],
|
471 |
-
device: Optional[torch.device] = None,
|
472 |
-
num_images_per_prompt: int = 1,
|
473 |
-
do_classifier_free_guidance: bool = True,
|
474 |
-
negative_prompt: Optional[Union[str, List[str]]] = None,
|
475 |
-
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
476 |
-
negative_prompt_3: Optional[Union[str, List[str]]] = None,
|
477 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
478 |
-
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
479 |
-
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
480 |
-
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
481 |
-
clip_skip: Optional[int] = None,
|
482 |
-
):
|
483 |
-
r"""
|
484 |
-
|
485 |
-
Args:
|
486 |
-
prompt (`str` or `List[str]`, *optional*):
|
487 |
-
prompt to be encoded
|
488 |
-
prompt_2 (`str` or `List[str]`, *optional*):
|
489 |
-
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
490 |
-
used in all text-encoders
|
491 |
-
prompt_3 (`str` or `List[str]`, *optional*):
|
492 |
-
The prompt or prompts to be sent to the `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
|
493 |
-
used in all text-encoders
|
494 |
-
device: (`torch.device`):
|
495 |
-
torch device
|
496 |
-
num_images_per_prompt (`int`):
|
497 |
-
number of images that should be generated per prompt
|
498 |
-
do_classifier_free_guidance (`bool`):
|
499 |
-
whether to use classifier free guidance or not
|
500 |
-
negative_prompt (`str` or `List[str]`, *optional*):
|
501 |
-
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
502 |
-
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
503 |
-
less than `1`).
|
504 |
-
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
505 |
-
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
506 |
-
`text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
|
507 |
-
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
508 |
-
The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
|
509 |
-
`text_encoder_3`. If not defined, `negative_prompt` is used in both text-encoders
|
510 |
-
prompt_embeds (`torch.FloatTensor`, *optional*):
|
511 |
-
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
512 |
-
provided, text embeddings will be generated from `prompt` input argument.
|
513 |
-
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
514 |
-
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
515 |
-
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
516 |
-
argument.
|
517 |
-
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
518 |
-
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
519 |
-
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
520 |
-
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
521 |
-
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
522 |
-
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
523 |
-
input argument.
|
524 |
-
clip_skip (`int`, *optional*):
|
525 |
-
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
526 |
-
the output of the pre-final layer will be used for computing the prompt embeddings.
|
527 |
-
"""
|
528 |
-
device = device or self._execution_device
|
529 |
-
|
530 |
-
prompt = [prompt] if isinstance(prompt, str) else prompt
|
531 |
-
if prompt is not None:
|
532 |
-
batch_size = len(prompt)
|
533 |
-
else:
|
534 |
-
batch_size = prompt_embeds.shape[0]
|
535 |
-
|
536 |
-
if prompt_embeds is None:
|
537 |
-
prompt_2 = prompt_2 or prompt
|
538 |
-
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
539 |
-
|
540 |
-
prompt_3 = prompt_3 or prompt
|
541 |
-
prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3
|
542 |
-
|
543 |
-
prompt_embed, pooled_prompt_embed = self._get_clip_prompt_embeds(
|
544 |
-
prompt=prompt,
|
545 |
-
device=device,
|
546 |
-
num_images_per_prompt=num_images_per_prompt,
|
547 |
-
clip_skip=clip_skip,
|
548 |
-
clip_model_index=0,
|
549 |
-
)
|
550 |
-
prompt_2_embed, pooled_prompt_2_embed = self._get_clip_prompt_embeds(
|
551 |
-
prompt=prompt_2,
|
552 |
-
device=device,
|
553 |
-
num_images_per_prompt=num_images_per_prompt,
|
554 |
-
clip_skip=clip_skip,
|
555 |
-
clip_model_index=1,
|
556 |
-
)
|
557 |
-
clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1)
|
558 |
-
|
559 |
-
t5_prompt_embed = self._get_t5_prompt_embeds(
|
560 |
-
prompt=prompt_3,
|
561 |
-
num_images_per_prompt=num_images_per_prompt,
|
562 |
-
device=device,
|
563 |
-
)
|
564 |
-
|
565 |
-
clip_prompt_embeds = torch.nn.functional.pad(
|
566 |
-
clip_prompt_embeds,
|
567 |
-
(0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1]),
|
568 |
-
)
|
569 |
-
|
570 |
-
prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2)
|
571 |
-
pooled_prompt_embeds = torch.cat(
|
572 |
-
[pooled_prompt_embed, pooled_prompt_2_embed], dim=-1
|
573 |
-
)
|
574 |
-
|
575 |
-
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
576 |
-
negative_prompt = negative_prompt or ""
|
577 |
-
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
578 |
-
negative_prompt_3 = negative_prompt_3 or negative_prompt
|
579 |
-
|
580 |
-
# normalize str to list
|
581 |
-
negative_prompt = (
|
582 |
-
batch_size * [negative_prompt]
|
583 |
-
if isinstance(negative_prompt, str)
|
584 |
-
else negative_prompt
|
585 |
-
)
|
586 |
-
negative_prompt_2 = (
|
587 |
-
batch_size * [negative_prompt_2]
|
588 |
-
if isinstance(negative_prompt_2, str)
|
589 |
-
else negative_prompt_2
|
590 |
-
)
|
591 |
-
negative_prompt_3 = (
|
592 |
-
batch_size * [negative_prompt_3]
|
593 |
-
if isinstance(negative_prompt_3, str)
|
594 |
-
else negative_prompt_3
|
595 |
-
)
|
596 |
-
|
597 |
-
if prompt is not None and type(prompt) is not type(negative_prompt):
|
598 |
-
raise TypeError(
|
599 |
-
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
600 |
-
f" {type(prompt)}."
|
601 |
-
)
|
602 |
-
elif batch_size != len(negative_prompt):
|
603 |
-
raise ValueError(
|
604 |
-
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
605 |
-
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
606 |
-
" the batch size of `prompt`."
|
607 |
-
)
|
608 |
-
|
609 |
-
negative_prompt_embed, negative_pooled_prompt_embed = (
|
610 |
-
self._get_clip_prompt_embeds(
|
611 |
-
negative_prompt,
|
612 |
-
device=device,
|
613 |
-
num_images_per_prompt=num_images_per_prompt,
|
614 |
-
clip_skip=None,
|
615 |
-
clip_model_index=0,
|
616 |
-
)
|
617 |
-
)
|
618 |
-
negative_prompt_2_embed, negative_pooled_prompt_2_embed = (
|
619 |
-
self._get_clip_prompt_embeds(
|
620 |
-
negative_prompt_2,
|
621 |
-
device=device,
|
622 |
-
num_images_per_prompt=num_images_per_prompt,
|
623 |
-
clip_skip=None,
|
624 |
-
clip_model_index=1,
|
625 |
-
)
|
626 |
-
)
|
627 |
-
negative_clip_prompt_embeds = torch.cat(
|
628 |
-
[negative_prompt_embed, negative_prompt_2_embed], dim=-1
|
629 |
-
)
|
630 |
-
|
631 |
-
t5_negative_prompt_embed = self._get_t5_prompt_embeds(
|
632 |
-
prompt=negative_prompt_3,
|
633 |
-
num_images_per_prompt=num_images_per_prompt,
|
634 |
-
device=device,
|
635 |
-
)
|
636 |
-
|
637 |
-
negative_clip_prompt_embeds = torch.nn.functional.pad(
|
638 |
-
negative_clip_prompt_embeds,
|
639 |
-
(
|
640 |
-
0,
|
641 |
-
t5_negative_prompt_embed.shape[-1]
|
642 |
-
- negative_clip_prompt_embeds.shape[-1],
|
643 |
-
),
|
644 |
-
)
|
645 |
-
|
646 |
-
negative_prompt_embeds = torch.cat(
|
647 |
-
[negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2
|
648 |
-
)
|
649 |
-
negative_pooled_prompt_embeds = torch.cat(
|
650 |
-
[negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1
|
651 |
-
)
|
652 |
-
|
653 |
-
return (
|
654 |
-
prompt_embeds,
|
655 |
-
negative_prompt_embeds,
|
656 |
-
pooled_prompt_embeds,
|
657 |
-
negative_pooled_prompt_embeds,
|
658 |
-
)
|
659 |
-
|
660 |
-
def check_inputs(
|
661 |
-
self,
|
662 |
-
prompt,
|
663 |
-
prompt_2,
|
664 |
-
prompt_3,
|
665 |
-
height,
|
666 |
-
width,
|
667 |
-
negative_prompt=None,
|
668 |
-
negative_prompt_2=None,
|
669 |
-
negative_prompt_3=None,
|
670 |
-
prompt_embeds=None,
|
671 |
-
negative_prompt_embeds=None,
|
672 |
-
pooled_prompt_embeds=None,
|
673 |
-
negative_pooled_prompt_embeds=None,
|
674 |
-
callback_on_step_end_tensor_inputs=None,
|
675 |
-
):
|
676 |
-
if height % 8 != 0 or width % 8 != 0:
|
677 |
-
raise ValueError(
|
678 |
-
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
|
679 |
-
)
|
680 |
-
|
681 |
-
if callback_on_step_end_tensor_inputs is not None and not all(
|
682 |
-
k in self._callback_tensor_inputs
|
683 |
-
for k in callback_on_step_end_tensor_inputs
|
684 |
-
):
|
685 |
-
raise ValueError(
|
686 |
-
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
687 |
-
)
|
688 |
-
|
689 |
-
if prompt is not None and prompt_embeds is not None:
|
690 |
-
raise ValueError(
|
691 |
-
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
692 |
-
" only forward one of the two."
|
693 |
-
)
|
694 |
-
elif prompt_2 is not None and prompt_embeds is not None:
|
695 |
-
raise ValueError(
|
696 |
-
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
697 |
-
" only forward one of the two."
|
698 |
-
)
|
699 |
-
elif prompt_3 is not None and prompt_embeds is not None:
|
700 |
-
raise ValueError(
|
701 |
-
f"Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
702 |
-
" only forward one of the two."
|
703 |
-
)
|
704 |
-
elif prompt is None and prompt_embeds is None:
|
705 |
-
raise ValueError(
|
706 |
-
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
707 |
-
)
|
708 |
-
elif prompt is not None and (
|
709 |
-
not isinstance(prompt, str) and not isinstance(prompt, list)
|
710 |
-
):
|
711 |
-
raise ValueError(
|
712 |
-
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
|
713 |
-
)
|
714 |
-
elif prompt_2 is not None and (
|
715 |
-
not isinstance(prompt_2, str) and not isinstance(prompt_2, list)
|
716 |
-
):
|
717 |
-
raise ValueError(
|
718 |
-
f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}"
|
719 |
-
)
|
720 |
-
elif prompt_3 is not None and (
|
721 |
-
not isinstance(prompt_3, str) and not isinstance(prompt_3, list)
|
722 |
-
):
|
723 |
-
raise ValueError(
|
724 |
-
f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}"
|
725 |
-
)
|
726 |
-
|
727 |
-
if negative_prompt is not None and negative_prompt_embeds is not None:
|
728 |
-
raise ValueError(
|
729 |
-
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
730 |
-
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
731 |
-
)
|
732 |
-
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
733 |
-
raise ValueError(
|
734 |
-
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
735 |
-
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
736 |
-
)
|
737 |
-
elif negative_prompt_3 is not None and negative_prompt_embeds is not None:
|
738 |
-
raise ValueError(
|
739 |
-
f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`:"
|
740 |
-
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
741 |
-
)
|
742 |
-
|
743 |
-
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
744 |
-
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
745 |
-
raise ValueError(
|
746 |
-
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
747 |
-
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
748 |
-
f" {negative_prompt_embeds.shape}."
|
749 |
-
)
|
750 |
-
|
751 |
-
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
752 |
-
raise ValueError(
|
753 |
-
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
754 |
-
)
|
755 |
-
|
756 |
-
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
757 |
-
raise ValueError(
|
758 |
-
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
759 |
-
)
|
760 |
-
|
761 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
762 |
-
def prepare_latents(
|
763 |
-
self,
|
764 |
-
batch_size,
|
765 |
-
num_channels_latents,
|
766 |
-
height,
|
767 |
-
width,
|
768 |
-
dtype,
|
769 |
-
device,
|
770 |
-
generator,
|
771 |
-
latents=None,
|
772 |
-
):
|
773 |
-
shape = (
|
774 |
-
batch_size,
|
775 |
-
num_channels_latents,
|
776 |
-
int(height) // self.vae_scale_factor,
|
777 |
-
int(width) // self.vae_scale_factor,
|
778 |
-
)
|
779 |
-
|
780 |
-
if isinstance(generator, list) and len(generator) != batch_size:
|
781 |
-
raise ValueError(
|
782 |
-
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
783 |
-
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
784 |
-
)
|
785 |
-
|
786 |
-
if latents is None:
|
787 |
-
latents = randn_tensor(
|
788 |
-
shape, generator=generator, device=device, dtype=dtype
|
789 |
-
)
|
790 |
-
else:
|
791 |
-
latents = latents.to(device=device, dtype=dtype)
|
792 |
-
|
793 |
-
return latents
|
794 |
-
|
795 |
-
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
|
796 |
-
def prepare_image(
|
797 |
-
self,
|
798 |
-
image,
|
799 |
-
width,
|
800 |
-
height,
|
801 |
-
batch_size,
|
802 |
-
num_images_per_prompt,
|
803 |
-
device,
|
804 |
-
dtype,
|
805 |
-
do_classifier_free_guidance=False,
|
806 |
-
guess_mode=False,
|
807 |
-
):
|
808 |
-
image = self.control_image_processor.preprocess(
|
809 |
-
image, height=height, width=width
|
810 |
-
).to(dtype=torch.float32)
|
811 |
-
image_batch_size = image.shape[0]
|
812 |
-
|
813 |
-
if image_batch_size == 1:
|
814 |
-
repeat_by = batch_size
|
815 |
-
else:
|
816 |
-
# image batch size is the same as prompt batch size
|
817 |
-
repeat_by = num_images_per_prompt
|
818 |
-
|
819 |
-
image = image.repeat_interleave(repeat_by, dim=0)
|
820 |
-
|
821 |
-
image = image.to(device=device, dtype=dtype)
|
822 |
-
|
823 |
-
if do_classifier_free_guidance and not guess_mode:
|
824 |
-
image = torch.cat([image] * 2)
|
825 |
-
|
826 |
-
return image
|
827 |
-
|
828 |
-
def prepare_image_with_mask(
|
829 |
-
self,
|
830 |
-
image,
|
831 |
-
mask,
|
832 |
-
width,
|
833 |
-
height,
|
834 |
-
batch_size,
|
835 |
-
num_images_per_prompt,
|
836 |
-
device,
|
837 |
-
dtype,
|
838 |
-
do_classifier_free_guidance=False,
|
839 |
-
guess_mode=False,
|
840 |
-
):
|
841 |
-
|
842 |
-
if isinstance(image, torch.Tensor):
|
843 |
-
pass
|
844 |
-
else:
|
845 |
-
image = self.image_processor.preprocess(
|
846 |
-
image, height=height, width=width
|
847 |
-
) # C,H,W
|
848 |
-
|
849 |
-
if isinstance(mask, torch.Tensor):
|
850 |
-
pass
|
851 |
-
else:
|
852 |
-
raise "Control Mask must be tensor"
|
853 |
-
|
854 |
-
image_batch_size = image.shape[0]
|
855 |
-
|
856 |
-
if image_batch_size == 1:
|
857 |
-
repeat_by = batch_size
|
858 |
-
else:
|
859 |
-
# image batch size is the same as prompt batch size
|
860 |
-
repeat_by = num_images_per_prompt
|
861 |
-
|
862 |
-
image = image.repeat_interleave(repeat_by, dim=0)
|
863 |
-
mask = mask.repeat_interleave(repeat_by, dim=0)
|
864 |
-
|
865 |
-
image = image.to(device=device, dtype=self.vae.dtype)
|
866 |
-
mask = mask.to(device=device, dtype=dtype)
|
867 |
-
|
868 |
-
image_latents = self.vae.encode(image).latent_dist.sample()
|
869 |
-
image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
870 |
-
image_latents = image_latents.to(dtype)
|
871 |
-
|
872 |
-
# cat image and mask
|
873 |
-
mask = torch.nn.functional.interpolate(
|
874 |
-
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
|
875 |
-
)
|
876 |
-
|
877 |
-
control_image = torch.cat([image_latents, mask], dim=1)
|
878 |
-
|
879 |
-
if do_classifier_free_guidance and not guess_mode:
|
880 |
-
control_image = torch.cat([control_image] * 2)
|
881 |
-
return control_image
|
882 |
-
|
883 |
-
@property
|
884 |
-
def guidance_scale(self):
|
885 |
-
return self._guidance_scale
|
886 |
-
|
887 |
-
@property
|
888 |
-
def clip_skip(self):
|
889 |
-
return self._clip_skip
|
890 |
-
|
891 |
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
892 |
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
893 |
-
# corresponds to doing no classifier free guidance.
|
894 |
-
@property
|
895 |
-
def do_classifier_free_guidance(self):
|
896 |
-
return self._guidance_scale > 1
|
897 |
-
|
898 |
-
@property
|
899 |
-
def joint_attention_kwargs(self):
|
900 |
-
return self._joint_attention_kwargs
|
901 |
-
|
902 |
-
@property
|
903 |
-
def num_timesteps(self):
|
904 |
-
return self._num_timesteps
|
905 |
-
|
906 |
-
@property
|
907 |
-
def interrupt(self):
|
908 |
-
return self._interrupt
|
909 |
-
|
910 |
-
@torch.no_grad()
|
911 |
-
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
912 |
-
def __call__(
|
913 |
-
self,
|
914 |
-
prompt: Union[str, List[str]] = None,
|
915 |
-
prompt_2: Optional[Union[str, List[str]]] = None,
|
916 |
-
prompt_3: Optional[Union[str, List[str]]] = None,
|
917 |
-
height: Optional[int] = None,
|
918 |
-
width: Optional[int] = None,
|
919 |
-
num_inference_steps: int = 28,
|
920 |
-
timesteps: List[int] = None,
|
921 |
-
guidance_scale: float = 7.0,
|
922 |
-
control_guidance_start: Union[float, List[float]] = 0.0,
|
923 |
-
control_guidance_end: Union[float, List[float]] = 1.0,
|
924 |
-
control_image: Union[
|
925 |
-
PipelineImageInput,
|
926 |
-
List[PipelineImageInput],
|
927 |
-
] = None,
|
928 |
-
control_mask=None,
|
929 |
-
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
930 |
-
controlnet_pooled_projections: Optional[torch.FloatTensor] = None,
|
931 |
-
negative_prompt: Optional[Union[str, List[str]]] = None,
|
932 |
-
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
933 |
-
negative_prompt_3: Optional[Union[str, List[str]]] = None,
|
934 |
-
num_images_per_prompt: Optional[int] = 1,
|
935 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
936 |
-
latents: Optional[torch.FloatTensor] = None,
|
937 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
938 |
-
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
939 |
-
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
940 |
-
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
941 |
-
output_type: Optional[str] = "pil",
|
942 |
-
return_dict: bool = True,
|
943 |
-
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
944 |
-
clip_skip: Optional[int] = None,
|
945 |
-
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
946 |
-
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
947 |
-
):
|
948 |
-
r"""
|
949 |
-
Function invoked when calling the pipeline for generation.
|
950 |
-
|
951 |
-
Args:
|
952 |
-
prompt (`str` or `List[str]`, *optional*):
|
953 |
-
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
954 |
-
instead.
|
955 |
-
prompt_2 (`str` or `List[str]`, *optional*):
|
956 |
-
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
957 |
-
will be used instead
|
958 |
-
prompt_3 (`str` or `List[str]`, *optional*):
|
959 |
-
The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
|
960 |
-
will be used instead
|
961 |
-
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
962 |
-
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
963 |
-
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
964 |
-
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
965 |
-
num_inference_steps (`int`, *optional*, defaults to 50):
|
966 |
-
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
967 |
-
expense of slower inference.
|
968 |
-
timesteps (`List[int]`, *optional*):
|
969 |
-
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
970 |
-
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
971 |
-
passed will be used. Must be in descending order.
|
972 |
-
guidance_scale (`float`, *optional*, defaults to 5.0):
|
973 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
974 |
-
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
975 |
-
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
976 |
-
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
977 |
-
usually at the expense of lower image quality.
|
978 |
-
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
|
979 |
-
The percentage of total steps at which the ControlNet starts applying.
|
980 |
-
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
|
981 |
-
The percentage of total steps at which the ControlNet stops applying.
|
982 |
-
control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
983 |
-
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
984 |
-
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
|
985 |
-
specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
|
986 |
-
as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
|
987 |
-
width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
|
988 |
-
images must be passed as a list such that each element of the list can be correctly batched for input
|
989 |
-
to a single ControlNet.
|
990 |
-
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
991 |
-
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
|
992 |
-
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
|
993 |
-
the corresponding scale as a list.
|
994 |
-
controlnet_pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`):
|
995 |
-
Embeddings projected from the embeddings of controlnet input conditions.
|
996 |
-
negative_prompt (`str` or `List[str]`, *optional*):
|
997 |
-
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
998 |
-
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
999 |
-
less than `1`).
|
1000 |
-
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
1001 |
-
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
1002 |
-
`text_encoder_2`. If not defined, `negative_prompt` is used instead
|
1003 |
-
negative_prompt_3 (`str` or `List[str]`, *optional*):
|
1004 |
-
The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
|
1005 |
-
`text_encoder_3`. If not defined, `negative_prompt` is used instead
|
1006 |
-
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1007 |
-
The number of images to generate per prompt.
|
1008 |
-
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1009 |
-
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
1010 |
-
to make generation deterministic.
|
1011 |
-
latents (`torch.FloatTensor`, *optional*):
|
1012 |
-
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
1013 |
-
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1014 |
-
tensor will ge generated by sampling using the supplied random `generator`.
|
1015 |
-
prompt_embeds (`torch.FloatTensor`, *optional*):
|
1016 |
-
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
1017 |
-
provided, text embeddings will be generated from `prompt` input argument.
|
1018 |
-
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1019 |
-
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
1020 |
-
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
1021 |
-
argument.
|
1022 |
-
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1023 |
-
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
1024 |
-
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
1025 |
-
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1026 |
-
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
1027 |
-
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
1028 |
-
input argument.
|
1029 |
-
output_type (`str`, *optional*, defaults to `"pil"`):
|
1030 |
-
The output format of the generate image. Choose between
|
1031 |
-
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
1032 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
1033 |
-
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
1034 |
-
of a plain tuple.
|
1035 |
-
joint_attention_kwargs (`dict`, *optional*):
|
1036 |
-
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
1037 |
-
`self.processor` in
|
1038 |
-
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1039 |
-
callback_on_step_end (`Callable`, *optional*):
|
1040 |
-
A function that calls at the end of each denoising steps during the inference. The function is called
|
1041 |
-
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
1042 |
-
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
1043 |
-
`callback_on_step_end_tensor_inputs`.
|
1044 |
-
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
1045 |
-
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1046 |
-
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
1047 |
-
`._callback_tensor_inputs` attribute of your pipeline class.
|
1048 |
-
|
1049 |
-
Examples:
|
1050 |
-
|
1051 |
-
Returns:
|
1052 |
-
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
|
1053 |
-
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
1054 |
-
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
1055 |
-
"""
|
1056 |
-
|
1057 |
-
height = height or self.default_sample_size * self.vae_scale_factor
|
1058 |
-
width = width or self.default_sample_size * self.vae_scale_factor
|
1059 |
-
|
1060 |
-
# align format for control guidance
|
1061 |
-
if not isinstance(control_guidance_start, list) and isinstance(
|
1062 |
-
control_guidance_end, list
|
1063 |
-
):
|
1064 |
-
control_guidance_start = len(control_guidance_end) * [
|
1065 |
-
control_guidance_start
|
1066 |
-
]
|
1067 |
-
elif not isinstance(control_guidance_end, list) and isinstance(
|
1068 |
-
control_guidance_start, list
|
1069 |
-
):
|
1070 |
-
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
1071 |
-
elif not isinstance(control_guidance_start, list) and not isinstance(
|
1072 |
-
control_guidance_end, list
|
1073 |
-
):
|
1074 |
-
mult = (
|
1075 |
-
len(self.controlnet.nets)
|
1076 |
-
if isinstance(self.controlnet, SD3MultiControlNetModel)
|
1077 |
-
else 1
|
1078 |
-
)
|
1079 |
-
control_guidance_start, control_guidance_end = (
|
1080 |
-
mult * [control_guidance_start],
|
1081 |
-
mult * [control_guidance_end],
|
1082 |
-
)
|
1083 |
-
|
1084 |
-
# 1. Check inputs. Raise error if not correct
|
1085 |
-
self.check_inputs(
|
1086 |
-
prompt,
|
1087 |
-
prompt_2,
|
1088 |
-
prompt_3,
|
1089 |
-
height,
|
1090 |
-
width,
|
1091 |
-
negative_prompt=negative_prompt,
|
1092 |
-
negative_prompt_2=negative_prompt_2,
|
1093 |
-
negative_prompt_3=negative_prompt_3,
|
1094 |
-
prompt_embeds=prompt_embeds,
|
1095 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
1096 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
1097 |
-
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1098 |
-
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
1099 |
-
)
|
1100 |
-
|
1101 |
-
self._guidance_scale = guidance_scale
|
1102 |
-
self._clip_skip = clip_skip
|
1103 |
-
self._joint_attention_kwargs = joint_attention_kwargs
|
1104 |
-
self._interrupt = False
|
1105 |
-
|
1106 |
-
# 2. Define call parameters
|
1107 |
-
if prompt is not None and isinstance(prompt, str):
|
1108 |
-
batch_size = 1
|
1109 |
-
elif prompt is not None and isinstance(prompt, list):
|
1110 |
-
batch_size = len(prompt)
|
1111 |
-
else:
|
1112 |
-
batch_size = prompt_embeds.shape[0]
|
1113 |
-
|
1114 |
-
device = self._execution_device
|
1115 |
-
dtype = self.transformer.dtype
|
1116 |
-
|
1117 |
-
(
|
1118 |
-
prompt_embeds,
|
1119 |
-
negative_prompt_embeds,
|
1120 |
-
pooled_prompt_embeds,
|
1121 |
-
negative_pooled_prompt_embeds,
|
1122 |
-
) = self.encode_prompt(
|
1123 |
-
prompt=prompt,
|
1124 |
-
prompt_2=prompt_2,
|
1125 |
-
prompt_3=prompt_3,
|
1126 |
-
negative_prompt=negative_prompt,
|
1127 |
-
negative_prompt_2=negative_prompt_2,
|
1128 |
-
negative_prompt_3=negative_prompt_3,
|
1129 |
-
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1130 |
-
prompt_embeds=prompt_embeds,
|
1131 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
1132 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
1133 |
-
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1134 |
-
device=device,
|
1135 |
-
clip_skip=self.clip_skip,
|
1136 |
-
num_images_per_prompt=num_images_per_prompt,
|
1137 |
-
)
|
1138 |
-
|
1139 |
-
if self.do_classifier_free_guidance:
|
1140 |
-
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
1141 |
-
pooled_prompt_embeds = torch.cat(
|
1142 |
-
[negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0
|
1143 |
-
)
|
1144 |
-
|
1145 |
-
# 3. Prepare control image
|
1146 |
-
if isinstance(self.controlnet, SD3ControlNetModel):
|
1147 |
-
control_image = self.prepare_image_with_mask(
|
1148 |
-
image=control_image,
|
1149 |
-
mask=control_mask,
|
1150 |
-
width=width,
|
1151 |
-
height=height,
|
1152 |
-
batch_size=batch_size * num_images_per_prompt,
|
1153 |
-
num_images_per_prompt=num_images_per_prompt,
|
1154 |
-
device=device,
|
1155 |
-
dtype=self.controlnet.dtype,
|
1156 |
-
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1157 |
-
)
|
1158 |
-
height, width = control_image.shape[-2:]
|
1159 |
-
height = height * self.vae_scale_factor
|
1160 |
-
width = width * self.vae_scale_factor
|
1161 |
-
elif isinstance(self.controlnet, SD3MultiControlNetModel):
|
1162 |
-
images = []
|
1163 |
-
for image_ in control_image:
|
1164 |
-
image_ = self.prepare_image_with_mask(
|
1165 |
-
image=image_,
|
1166 |
-
mask=control_mask,
|
1167 |
-
width=width,
|
1168 |
-
height=height,
|
1169 |
-
batch_size=batch_size * num_images_per_prompt,
|
1170 |
-
num_images_per_prompt=num_images_per_prompt,
|
1171 |
-
device=device,
|
1172 |
-
dtype=self.controlnet.dtype,
|
1173 |
-
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1174 |
-
)
|
1175 |
-
images.append(image_)
|
1176 |
-
|
1177 |
-
control_image = images
|
1178 |
-
height, width = control_image[0].shape[-2:]
|
1179 |
-
height = height * self.vae_scale_factor
|
1180 |
-
width = width * self.vae_scale_factor
|
1181 |
-
else:
|
1182 |
-
raise ValueError("ControlNet must be of type SD3ControlNetModel")
|
1183 |
-
|
1184 |
-
if controlnet_pooled_projections is None:
|
1185 |
-
controlnet_pooled_projections = torch.zeros_like(pooled_prompt_embeds)
|
1186 |
-
else:
|
1187 |
-
controlnet_pooled_projections = (
|
1188 |
-
controlnet_pooled_projections or pooled_prompt_embeds
|
1189 |
-
)
|
1190 |
-
|
1191 |
-
# 4. Prepare timesteps
|
1192 |
-
timesteps, num_inference_steps = retrieve_timesteps(
|
1193 |
-
self.scheduler, num_inference_steps, device, timesteps
|
1194 |
-
)
|
1195 |
-
num_warmup_steps = max(
|
1196 |
-
len(timesteps) - num_inference_steps * self.scheduler.order, 0
|
1197 |
-
)
|
1198 |
-
self._num_timesteps = len(timesteps)
|
1199 |
-
|
1200 |
-
# 5. Prepare latent variables
|
1201 |
-
num_channels_latents = self.transformer.config.in_channels
|
1202 |
-
latents = self.prepare_latents(
|
1203 |
-
batch_size * num_images_per_prompt,
|
1204 |
-
num_channels_latents,
|
1205 |
-
height,
|
1206 |
-
width,
|
1207 |
-
prompt_embeds.dtype,
|
1208 |
-
device,
|
1209 |
-
generator,
|
1210 |
-
latents,
|
1211 |
-
)
|
1212 |
-
|
1213 |
-
# 6. Create tensor stating which controlnets to keep
|
1214 |
-
controlnet_keep = []
|
1215 |
-
for i in range(len(timesteps)):
|
1216 |
-
keeps = [
|
1217 |
-
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
1218 |
-
for s, e in zip(control_guidance_start, control_guidance_end)
|
1219 |
-
]
|
1220 |
-
controlnet_keep.append(
|
1221 |
-
keeps[0] if isinstance(self.controlnet, SD3ControlNetModel) else keeps
|
1222 |
-
)
|
1223 |
-
|
1224 |
-
# 7. Denoising loop
|
1225 |
-
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1226 |
-
for i, t in enumerate(timesteps):
|
1227 |
-
if self.interrupt:
|
1228 |
-
continue
|
1229 |
-
|
1230 |
-
# expand the latents if we are doing classifier free guidance
|
1231 |
-
latent_model_input = (
|
1232 |
-
torch.cat([latents] * 2)
|
1233 |
-
if self.do_classifier_free_guidance
|
1234 |
-
else latents
|
1235 |
-
)
|
1236 |
-
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
1237 |
-
timestep = t.expand(latent_model_input.shape[0])
|
1238 |
-
|
1239 |
-
if isinstance(controlnet_keep[i], list):
|
1240 |
-
cond_scale = [
|
1241 |
-
c * s
|
1242 |
-
for c, s in zip(
|
1243 |
-
controlnet_conditioning_scale, controlnet_keep[i]
|
1244 |
-
)
|
1245 |
-
]
|
1246 |
-
else:
|
1247 |
-
controlnet_cond_scale = controlnet_conditioning_scale
|
1248 |
-
if isinstance(controlnet_cond_scale, list):
|
1249 |
-
controlnet_cond_scale = controlnet_cond_scale[0]
|
1250 |
-
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
1251 |
-
|
1252 |
-
# controlnet(s) inference
|
1253 |
-
control_block_samples = self.controlnet(
|
1254 |
-
hidden_states=latent_model_input,
|
1255 |
-
timestep=timestep,
|
1256 |
-
encoder_hidden_states=prompt_embeds,
|
1257 |
-
pooled_projections=controlnet_pooled_projections,
|
1258 |
-
joint_attention_kwargs=self.joint_attention_kwargs,
|
1259 |
-
controlnet_cond=control_image,
|
1260 |
-
conditioning_scale=cond_scale,
|
1261 |
-
return_dict=False,
|
1262 |
-
)[0]
|
1263 |
-
|
1264 |
-
noise_pred = self.transformer(
|
1265 |
-
hidden_states=latent_model_input,
|
1266 |
-
timestep=timestep,
|
1267 |
-
encoder_hidden_states=prompt_embeds,
|
1268 |
-
pooled_projections=pooled_prompt_embeds,
|
1269 |
-
block_controlnet_hidden_states=control_block_samples,
|
1270 |
-
joint_attention_kwargs=self.joint_attention_kwargs,
|
1271 |
-
return_dict=False,
|
1272 |
-
)[0]
|
1273 |
-
|
1274 |
-
# perform guidance
|
1275 |
-
if self.do_classifier_free_guidance:
|
1276 |
-
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1277 |
-
noise_pred = noise_pred_uncond + self.guidance_scale * (
|
1278 |
-
noise_pred_text - noise_pred_uncond
|
1279 |
-
)
|
1280 |
-
|
1281 |
-
# compute the previous noisy sample x_t -> x_t-1
|
1282 |
-
latents_dtype = latents.dtype
|
1283 |
-
latents = self.scheduler.step(
|
1284 |
-
noise_pred, t, latents, return_dict=False
|
1285 |
-
)[0]
|
1286 |
-
|
1287 |
-
if latents.dtype != latents_dtype:
|
1288 |
-
if torch.backends.mps.is_available():
|
1289 |
-
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
1290 |
-
latents = latents.to(latents_dtype)
|
1291 |
-
|
1292 |
-
if callback_on_step_end is not None:
|
1293 |
-
callback_kwargs = {}
|
1294 |
-
for k in callback_on_step_end_tensor_inputs:
|
1295 |
-
callback_kwargs[k] = locals()[k]
|
1296 |
-
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1297 |
-
|
1298 |
-
latents = callback_outputs.pop("latents", latents)
|
1299 |
-
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1300 |
-
negative_prompt_embeds = callback_outputs.pop(
|
1301 |
-
"negative_prompt_embeds", negative_prompt_embeds
|
1302 |
-
)
|
1303 |
-
negative_pooled_prompt_embeds = callback_outputs.pop(
|
1304 |
-
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
1305 |
-
)
|
1306 |
-
|
1307 |
-
# call the callback, if provided
|
1308 |
-
if i == len(timesteps) - 1 or (
|
1309 |
-
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
1310 |
-
):
|
1311 |
-
progress_bar.update()
|
1312 |
-
|
1313 |
-
if XLA_AVAILABLE:
|
1314 |
-
xm.mark_step()
|
1315 |
-
|
1316 |
-
if output_type == "latent":
|
1317 |
-
image = latents
|
1318 |
-
|
1319 |
-
else:
|
1320 |
-
latents = (
|
1321 |
-
latents / self.vae.config.scaling_factor
|
1322 |
-
) + self.vae.config.shift_factor
|
1323 |
-
latents = latents.to(dtype=self.vae.dtype)
|
1324 |
-
image = self.vae.decode(latents, return_dict=False)[0]
|
1325 |
-
image = self.image_processor.postprocess(image, output_type=output_type)
|
1326 |
-
|
1327 |
-
# Offload all models
|
1328 |
-
self.maybe_free_model_hooks()
|
1329 |
-
|
1330 |
-
if not return_dict:
|
1331 |
-
return (image,)
|
1332 |
-
|
1333 |
-
return StableDiffusion3PipelineOutput(images=image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|