File size: 1,399 Bytes
3d03aed c034ad9 3d03aed c034ad9 a6599fe c034ad9 a6599fe c034ad9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
---
license: apache-2.0
tags:
- scene text erase
- poster text erase
---
# Self-supervised Text Erasing Model (STE)
Paper: [https://arxiv.org/abs/2204.12743](https://arxiv.org/abs/2204.12743)<br/>
Project Page: [https://github.com/alimama-creative/Self-supervised-Text-Erasing](https://github.com/alimama-creative/Self-supervised-Text-Erasing)<br/>
## Description
The checkpoints are trained from the posterErase dataset. There are two versions with different training mechanism.
Self-supervised Text Trasing (ste_best_net_G.pth): To use it, please download from this page, and put it under './checkpoints/erasenet/ste/best_net_G.pth'
Finetuning after STE (ft_best_net_G.pth): To use it, please download from this page, and put it under './checkpoints/erasenet/ste/best_net_G.pth'
## Usage
First, download the github project and install the python package.
```bash
git clone https://github.com/alimama-creative/Self-supervised-Text-Erasing.git
pip install -r requirements.txt
```
Then, follow the command line provied in the github to run the inference code.
```bash
python test.py --dataset_mode items --dataroot ./examples/poster --model erasenet --name ft --which_epoch best # inferece with the ste model on poster
python test.py --dataset_mode items --dataroot ./examples/poster --model erasenet --name ste --which_epoch best # inferece with the finetuned model model on poster
```
|