--- library_name: diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 tags: - text-to-image license: apache-2.0 inference: false --- # Sub-path Linear Approximation Model (SLAM) LoRA: SDXL Paper: [https://arxiv.org/abs/2404.13903](https://arxiv.org/abs/2404.13903)
Project Page: [https://subpath-linear-approx-model.github.io/](https://subpath-linear-approx-model.github.io/)
The checkpoint is a distilled from [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) with our proposed Sub-path Linear Approximation Model, which reduces the number of inference steps to only between 2-4 steps. ## Usage First, install the latest version of the Diffusers library as well as peft, accelerate and transformers. ```bash pip install --upgrade pip pip install --upgrade diffusers transformers accelerate peft ``` We implement SLAM to be compatible with [LCMScheduler](https://huggingface.co/docs/diffusers/v0.22.3/en/api/schedulers/lcm#diffusers.LCMScheduler). You can use SLAM-LoRA just like you use LCM-LoRA. ```python import torch from diffusers import LCMScheduler, AutoPipelineForText2Image model_id = "stabilityai/stable-diffusion-xl-base-1.0" adapter_id = "alimama-creative/slam-lora-sdxl" pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16") pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) pipe.to("cuda") # load and fuse lcm lora pipe.load_lora_weights(adapter_id) pipe.fuse_lora() prompt = "A brown teddy bear holding a glass vase in front of a grave." image = pipe(prompt=prompt, num_inference_steps=4, guidance_scale=1.0).images[0] ``` Compare with latent-consistency/lcm-lora-sdxl. ---