--- license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: acer_nitro_mdberta results: [] --- # acer_nitro_mdberta This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7384 - F1: 0.7593 - Roc Auc: 0.8588 - Accuracy: 0.6506 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | No log | 1.0 | 166 | 0.5907 | 0.7281 | 0.8497 | 0.5904 | | No log | 2.0 | 332 | 0.5260 | 0.6836 | 0.8576 | 0.5181 | | No log | 3.0 | 498 | 0.7023 | 0.7324 | 0.8381 | 0.6024 | | 0.3153 | 4.0 | 664 | 0.7848 | 0.7245 | 0.8168 | 0.5904 | | 0.3153 | 5.0 | 830 | 0.6979 | 0.7436 | 0.8666 | 0.5904 | | 0.3153 | 6.0 | 996 | 0.8550 | 0.7426 | 0.8337 | 0.6265 | | 0.1464 | 7.0 | 1162 | 0.7102 | 0.7830 | 0.8700 | 0.6747 | | 0.1464 | 8.0 | 1328 | 0.7172 | 0.7721 | 0.8662 | 0.6627 | | 0.1464 | 9.0 | 1494 | 0.7812 | 0.7664 | 0.8613 | 0.6506 | | 0.0781 | 10.0 | 1660 | 0.7384 | 0.7593 | 0.8588 | 0.6506 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0