File size: 1,869 Bytes
8bd081a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
language: "c++"
tags:
- exbert
- authorship-identification
- fire2020
- pan2020
- ai-soco
- classification
license: "mit"
datasets:
- ai-soco
metrics:
- accuracy
---
# ai-soco-c++-roberta-tiny-96-clas
## Model description
`ai-soco-c++-roberta-tiny-96` model fine-tuned on [AI-SOCO](https://sites.google.com/view/ai-soco-2020) task.
#### How to use
You can use the model directly after tokenizing the text using the provided tokenizer with the model files.
#### Limitations and bias
The model is limited to C++ programming language only.
## Training data
The model initialized from [`ai-soco-c++-roberta-tiny-96`](https://github.com/huggingface/transformers/blob/master/model_cards/aliosm/ai-soco-c++-roberta-tiny-96) model and trained using [AI-SOCO](https://sites.google.com/view/ai-soco-2020) dataset to do text classification.
## Training procedure
The model trained on Google Colab platform using V100 GPU for 10 epochs, 16 batch size, 512 max sequence length (sequences larger than 512 were truncated). Each continues 4 spaces were converted to a single tab character (`\t`) before tokenization.
## Eval results
The model achieved 91.12%/91.02% accuracy on AI-SOCO task and ranked in the 7th place.
### BibTeX entry and citation info
```bibtex
@inproceedings{ai-soco-2020-fire,
title = "Overview of the {PAN@FIRE} 2020 Task on {Authorship Identification of SOurce COde (AI-SOCO)}",
author = "Fadel, Ali and Musleh, Husam and Tuffaha, Ibraheem and Al-Ayyoub, Mahmoud and Jararweh, Yaser and Benkhelifa, Elhadj and Rosso, Paolo",
booktitle = "Proceedings of The 12th meeting of the Forum for Information Retrieval Evaluation (FIRE 2020)",
year = "2020"
}
```
<a href="https://huggingface.co/exbert/?model=aliosm/ai-soco-c++-roberta-tiny-96-clas">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>
|