File size: 2,120 Bytes
f736c99
 
 
f0ac0a2
18677e5
 
f736c99
 
18677e5
 
f736c99
f0ac0a2
f736c99
 
 
18677e5
f736c99
f0ac0a2
 
f736c99
 
f0ac0a2
f736c99
18677e5
f736c99
18677e5
f736c99
 
 
 
 
f0ac0a2
f736c99
f0ac0a2
f736c99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---

base_model: openai/whisper-small
datasets:
- common_voice_17_0
library_name: transformers
license: apache-2.0
metrics:
- wer
tags:
- generated_from_trainer
model-index:
- name: whisper-small-tr
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: common_voice_17_0
      type: common_voice_17_0
      config: tr
      split: test
      args: tr
    metrics:
    - type: wer
      value: 20.088563399472026
      name: Wer
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-small-tr

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_17_0 dataset.

It achieves the following results on the evaluation set:

- Loss: 0.2316

- Wer: 20.0886



## Model description



More information needed



## Intended uses & limitations



More information needed



## Training and evaluation data



More information needed



## Training procedure



### Training hyperparameters



The following hyperparameters were used during training:

- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500

- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.2284        | 0.3447 | 1000 | 0.2814          | 23.9819 |
| 0.1906        | 0.6894 | 2000 | 0.2606          | 22.5598 |
| 0.0945        | 1.0341 | 3000 | 0.2472          | 21.1990 |
| 0.0871        | 1.3788 | 4000 | 0.2405          | 20.6744 |
| 0.0823        | 1.7235 | 5000 | 0.2316          | 20.0886 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0+cu124
- Datasets 3.0.0
- Tokenizers 0.19.1