File size: 10,060 Bytes
ad1e0a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
from config import DatasetName, W300Conf, DatasetType, LearningConfig, InputDataSize, CofwConf
from cnn import CNNModel
import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt
import math
from datetime import datetime
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
from numpy import save, load, asarray
import csv
from skimage.io import imread
import pickle
from tqdm import tqdm
import os
from data_util import DataUtil
from acr_loss import ACRLoss
class Train:
def __init__(self, arch, dataset_name, save_path, lambda_weight):
self.lambda_weight = lambda_weight
self.dataset_name = dataset_name
self.save_path = save_path
self.arch = arch
self.base_lr = 1e-3
self.max_lr = 5e-3
if dataset_name == DatasetName.w300:
self.num_landmark = W300Conf.num_of_landmarks * 2
self.img_path = W300Conf.train_image
self.annotation_path = W300Conf.train_annotation
'''evaluation path:'''
self.eval_img_path = W300Conf.test_image_path + 'challenging/'
self.eval_annotation_path = W300Conf.test_annotation_path + 'challenging/'
if dataset_name == DatasetName.cofw:
self.num_landmark = CofwConf.num_of_landmarks * 2
self.img_path = CofwConf.train_image
self.annotation_path = CofwConf.train_annotation
'''evaluation path:'''
self.eval_img_path = CofwConf.test_image_path
self.eval_annotation_path = CofwConf.test_annotation_path
def train(self, weight_path):
"""
:param weight_path:
:return:
"""
'''create loss'''
c_loss = ACRLoss()
'''create summary writer'''
summary_writer = tf.summary.create_file_writer(
"./train_logs/fit/" + datetime.now().strftime("%Y%m%d-%H%M%S"))
'''create sample generator'''
x_train_filenames, y_train_filenames = self._create_generators()
'''making models'''
model = self.make_model(arch=self.arch, w_path=weight_path)
'''create train configuration'''
step_per_epoch = len(x_train_filenames) // LearningConfig.batch_size
lr = 1e-3
for epoch in range(LearningConfig.epochs):
'''calculate Learning rate'''
optimizer = self._get_optimizer(lr=lr)
''''''
x_train_filenames, y_train_filenames = self._shuffle_data(x_train_filenames, y_train_filenames)
for batch_index in range(step_per_epoch):
'''load annotation and images'''
images, annotation_gr = self._get_batch_sample(
batch_index=batch_index, x_train_filenames=x_train_filenames,
y_train_filenames=y_train_filenames)
phi = self.calculate_adoptive_weight(epoch=epoch, batch_index=batch_index,
y_train_filenames=y_train_filenames,
weight_path=weight_path)
'''convert to tensor'''
images = tf.cast(images, tf.float32)
annotation_gr = tf.cast(annotation_gr, tf.float32)
'''train step'''
loss_total, loss_low, loss_high = self.train_step(
epoch=epoch, step=batch_index,
total_steps=step_per_epoch,
images=images,
model=model,
annotation_gr=annotation_gr,
phi=phi,
lambda_weight=self.lambda_weight,
optimizer=optimizer,
summary_writer=summary_writer, c_loss=c_loss)
with summary_writer.as_default():
tf.summary.scalar('loss_total', loss_total, step=epoch)
tf.summary.scalar('loss_low', loss_low, step=epoch)
tf.summary.scalar('loss_high', loss_high, step=epoch)
'''save weights'''
model.save(self.save_path + str(epoch) + '_' + self.dataset_name + '.h5')
# @tf.function
def train_step(self, epoch, step, total_steps, images, model, annotation_gr, phi,
optimizer, summary_writer, c_loss, lambda_weight):
with tf.GradientTape() as tape:
'''create annotation_predicted'''
annotation_predicted = model(images, training=True)
'''calculate loss'''
loss_total, loss_low, loss_high = c_loss.acr_loss(x_pr=annotation_predicted,
x_gt=annotation_gr,
phi=phi,
lambda_weight=lambda_weight,
ds_name=self.dataset_name)
'''calculate gradient'''
gradients_of_model = tape.gradient(loss_total, model.trainable_variables)
'''apply Gradients:'''
optimizer.apply_gradients(zip(gradients_of_model, model.trainable_variables))
'''printing loss Values: '''
tf.print("->EPOCH: ", str(epoch), "->STEP: ", str(step) + '/' + str(total_steps),
' -> : LOSS: ', loss_total,
' -> : loss_low: ', loss_low,
' -> : loss_high: ', loss_high
)
# print('==--==--==--==--==--==--==--==--==--')
with summary_writer.as_default():
tf.summary.scalar('loss_total', loss_total, step=epoch)
tf.summary.scalar('loss_low', loss_low, step=epoch)
tf.summary.scalar('loss_high', loss_high, step=epoch)
return loss_total, loss_low, loss_high
def calculate_adoptive_weight(self, epoch, batch_index, y_train_filenames, weight_path):
dt_utils = DataUtil(self.num_landmark)
batch_y = y_train_filenames[
batch_index * LearningConfig.batch_size:(batch_index + 1) * LearningConfig.batch_size]
asm_acc = None
if 0 <= epoch <= 15:
asm_acc = 80
elif 15 < epoch <= 30:
asm_acc = 85
elif 30 < epoch <= 70:
asm_acc = 90
elif 70 < epoch <= 100:
asm_acc = 95
pn_batch = np.array([self._load_and_normalize(self.annotation_path + file_name) for file_name in batch_y])
pn_batch_asm = np.array([dt_utils.get_asm(input=self._load_and_normalize(self.annotation_path + file_name),
dataset_name=self.dataset_name, accuracy=asm_acc)
for file_name in batch_y])
delta = np.array(abs(pn_batch - pn_batch_asm))
phi = np.array([delta[i] / np.max(delta[i]) for i in range(len(pn_batch))]) # bs * num_lnd
return phi
def _get_optimizer(self, lr=1e-1, beta_1=0.9, beta_2=0.999, decay=1e-5):
return tf.keras.optimizers.Adam(lr=lr, beta_1=beta_1, beta_2=beta_2, decay=decay)
def make_model(self, arch, w_path):
cnn = CNNModel()
model = cnn.get_model(arch=arch, output_len=self.num_landmark)
if w_path is not None:
model.load_weights(w_path)
return model
def _shuffle_data(self, filenames, labels):
filenames_shuffled, y_labels_shuffled = shuffle(filenames, labels)
return filenames_shuffled, y_labels_shuffled
def _create_generators(self, img_path=None, annotation_path=None):
tf_utils = DataUtil(number_of_landmark=self.num_landmark)
if img_path is None:
filenames, labels = tf_utils.create_image_and_labels_name(img_path=self.img_path,
annotation_path=self.annotation_path)
else:
filenames, labels = tf_utils.create_image_and_labels_name(img_path=img_path,
annotation_path=annotation_path)
filenames_shuffled, y_labels_shuffled = shuffle(filenames, labels)
return filenames_shuffled, y_labels_shuffled
def _get_batch_sample(self, batch_index, x_train_filenames, y_train_filenames, is_eval=False, batch_size=None):
if is_eval:
batch_x = x_train_filenames[
batch_index * batch_size:(batch_index + 1) * batch_size]
batch_y = y_train_filenames[
batch_index * batch_size:(batch_index + 1) * batch_size]
img_batch = np.array([imread(self.eval_img_path + file_name) for file_name in batch_x]) / 255.0
pn_batch = np.array([load(self.eval_annotation_path + file_name) for file_name in
batch_y])
else:
img_path = self.img_path
pn_tr_path = self.annotation_path
'''create batch data and normalize images'''
batch_x = x_train_filenames[
batch_index * LearningConfig.batch_size:(batch_index + 1) * LearningConfig.batch_size]
batch_y = y_train_filenames[
batch_index * LearningConfig.batch_size:(batch_index + 1) * LearningConfig.batch_size]
'''create img and annotations'''
img_batch = np.array([imread(img_path + file_name) for file_name in batch_x]) / 255.0
pn_batch = np.array([self._load_and_normalize(pn_tr_path + file_name) for file_name in batch_y])
return img_batch, pn_batch
def _load_and_normalize(self, point_path):
annotation = load(point_path)
width = InputDataSize.image_input_size
height = InputDataSize.image_input_size
x_center = width / 2
y_center = height / 2
annotation_norm = []
for p in range(0, len(annotation), 2):
annotation_norm.append((x_center - annotation[p]) / width)
annotation_norm.append((y_center - annotation[p + 1]) / height)
return annotation_norm
|