julien-c HF staff commited on
Commit
06e3959
1 Parent(s): 16de0c2

Migrate model card from transformers-repo

Browse files

Read announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/allegro/herbert-klej-cased-v1/README.md

Files changed (1) hide show
  1. README.md +85 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: pl
3
+ ---
4
+
5
+ # HerBERT
6
+ **[HerBERT](https://en.wikipedia.org/wiki/Zbigniew_Herbert)** is a BERT-based Language Model trained on Polish Corpora
7
+ using only MLM objective with dynamic masking of whole words. For more details, please refer to:
8
+ [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://arxiv.org/abs/2005.00630).
9
+
10
+ ## Dataset
11
+ **HerBERT** training dataset is a combination of several publicly available corpora for Polish language:
12
+
13
+ | Corpus | Tokens | Texts |
14
+ | :------ | ------: | ------: |
15
+ | [OSCAR](https://traces1.inria.fr/oscar/)| 6710M | 145M |
16
+ | [Open Subtitles](http://opus.nlpl.eu/OpenSubtitles-v2018.php) | 1084M | 1.1M |
17
+ | [Wikipedia](https://dumps.wikimedia.org/) | 260M | 1.5M |
18
+ | [Wolne Lektury](https://wolnelektury.pl/) | 41M | 5.5k |
19
+ | [Allegro Articles](https://allegro.pl/artykuly) | 18M | 33k |
20
+
21
+ ## Tokenizer
22
+ The training dataset was tokenized into subwords using [HerBERT Tokenizer](https://huggingface.co/allegro/herbert-klej-cased-tokenizer-v1); a character level byte-pair encoding with
23
+ a vocabulary size of 50k tokens. The tokenizer itself was trained on [Wolne Lektury](https://wolnelektury.pl/) and a publicly available subset of
24
+ [National Corpus of Polish](http://nkjp.pl/index.php?page=14&lang=0) with a [fastBPE](https://github.com/glample/fastBPE) library.
25
+
26
+ Tokenizer utilizes `XLMTokenizer` implementation for that reason, one should load it as `allegro/herbert-klej-cased-tokenizer-v1`.
27
+
28
+ ## HerBERT models summary
29
+ | Model | WWM | Cased | Tokenizer | Vocab Size | Batch Size | Train Steps |
30
+ | :------ | ------: | ------: | ------: | ------: | ------: | ------: |
31
+ | herbert-klej-cased-v1 | YES | YES | BPE | 50K | 570 | 180k |
32
+
33
+ ## Model evaluation
34
+ HerBERT was evaluated on the [KLEJ](https://klejbenchmark.com/) benchmark, publicly available set of nine evaluation tasks for the Polish language understanding.
35
+ It had the best average performance and obtained the best results for three of them.
36
+
37
+ | Model | Average | NKJP-NER | CDSC-E | CDSC-R | CBD | PolEmo2.0-IN |PolEmo2.0-OUT | DYK | PSC | AR |
38
+ | :------ | ------: | ------: | ------: | ------: | ------: | ------: | ------: | ------: | ------: | ------: |
39
+ | herbert-klej-cased-v1 | **80.5** | 92.7 | 92.5 | 91.9 | **50.3** | **89.2** |**76.3** |52.1 |95.3 | 84.5 |
40
+
41
+ Full leaderboard is available [online](https://klejbenchmark.com/leaderboard).
42
+
43
+
44
+ ## HerBERT usage
45
+ Model training and experiments were conducted with [transformers](https://github.com/huggingface/transformers) in version 2.0.
46
+
47
+ Example code:
48
+ ```python
49
+ from transformers import XLMTokenizer, RobertaModel
50
+
51
+ tokenizer = XLMTokenizer.from_pretrained("allegro/herbert-klej-cased-tokenizer-v1")
52
+ model = RobertaModel.from_pretrained("allegro/herbert-klej-cased-v1")
53
+
54
+ encoded_input = tokenizer.encode("Kto ma lepszą sztukę, ma lepszy rząd – to jasne.", return_tensors='pt')
55
+ outputs = model(encoded_input)
56
+ ```
57
+
58
+ HerBERT can also be loaded using `AutoTokenizer` and `AutoModel`:
59
+
60
+ ```python
61
+ tokenizer = AutoTokenizer.from_pretrained("allegro/herbert-klej-cased-tokenizer-v1")
62
+ model = AutoModel.from_pretrained("allegro/herbert-klej-cased-v1")
63
+ ```
64
+
65
+ ## License
66
+ CC BY-SA 4.0
67
+
68
+ ## Citation
69
+ If you use this model, please cite the following paper:
70
+ ```
71
+ @misc{rybak2020klej,
72
+ title={KLEJ: Comprehensive Benchmark for Polish Language Understanding},
73
+ author={Piotr Rybak and Robert Mroczkowski and Janusz Tracz and Ireneusz Gawlik},
74
+ year={2020},
75
+ eprint={2005.00630},
76
+ archivePrefix={arXiv},
77
+ primaryClass={cs.CL}
78
+ }
79
+ ```
80
+ Paper is accepted at ACL 2020, as soon as proceedings appear, we will update the BibTeX.
81
+
82
+ ## Authors
83
+ Model was trained by **Allegro Machine Learning Research** team.
84
+
85
+ You can contact us at: <a href="mailto:klejbenchmark@allegro.pl">klejbenchmark@allegro.pl</a>