File size: 89,679 Bytes
9f4fd56
 
 
 
 
 
 
 
f0b49b0
 
9f4fd56
 
 
 
 
 
 
 
 
 
 
 
 
 
f0b49b0
 
9f4fd56
 
 
 
 
 
f0b49b0
 
e5a7913
9f4fd56
 
 
 
 
e5a7913
9f4fd56
 
 
 
 
 
 
 
 
 
f0b49b0
 
 
 
 
e5a7913
 
 
 
 
 
 
 
 
 
 
 
 
 
9f4fd56
 
 
 
 
 
 
 
 
 
 
f0b49b0
 
 
 
 
 
 
 
 
 
 
9f4fd56
 
 
 
 
 
f0b49b0
9f4fd56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0b49b0
9f4fd56
 
 
e5a7913
9f4fd56
 
f0b49b0
 
9f4fd56
 
 
 
 
 
 
 
 
 
 
f0b49b0
9f4fd56
 
 
 
 
 
 
 
e5a7913
9f4fd56
 
 
 
 
 
 
 
 
 
 
e5a7913
9f4fd56
 
 
 
 
 
 
 
 
 
f0b49b0
 
9f4fd56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0b49b0
 
9f4fd56
f0b49b0
9f4fd56
f0b49b0
9f4fd56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0b49b0
9f4fd56
 
 
 
 
 
 
 
 
 
 
 
 
 
e5a7913
9f4fd56
 
 
 
 
f0b49b0
 
9f4fd56
 
 
 
e5a7913
9f4fd56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5a7913
9f4fd56
 
 
 
 
 
 
 
 
 
e5a7913
9f4fd56
 
 
 
 
f0b49b0
 
 
 
 
 
 
 
 
 
 
 
 
e5a7913
f0b49b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5a7913
 
 
 
 
 
 
 
f0b49b0
9f4fd56
f0b49b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5a7913
f0b49b0
 
 
 
 
 
 
 
 
 
e5a7913
f0b49b0
 
 
 
 
 
 
e5a7913
 
f0b49b0
 
 
 
 
 
 
 
 
9f4fd56
 
f0b49b0
 
 
9f4fd56
 
 
f0b49b0
9f4fd56
 
 
 
f0b49b0
 
9f4fd56
 
 
 
f0b49b0
 
9f4fd56
 
 
f0b49b0
9f4fd56
 
 
f0b49b0
 
9f4fd56
 
 
 
f0b49b0
 
9f4fd56
 
 
 
f0b49b0
 
9f4fd56
 
 
 
f0b49b0
9f4fd56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5a7913
9f4fd56
 
 
 
 
 
 
e5a7913
9f4fd56
 
 
 
 
 
 
 
f0b49b0
9f4fd56
f0b49b0
9f4fd56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5a7913
 
9f4fd56
e5a7913
9f4fd56
e5a7913
 
 
 
9f4fd56
 
 
e5a7913
9f4fd56
 
 
 
e5a7913
 
f0b49b0
 
 
 
 
 
 
 
 
 
e5a7913
f0b49b0
 
 
 
 
 
 
 
 
 
9f4fd56
f0b49b0
9f4fd56
f0b49b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f4fd56
 
 
 
 
 
 
 
 
 
 
 
 
f0b49b0
 
 
 
 
 
 
 
 
 
 
 
9f4fd56
 
 
 
f0b49b0
 
 
9f4fd56
 
 
 
 
 
 
 
 
 
 
 
 
 
f0b49b0
9f4fd56
f0b49b0
 
 
 
 
 
 
 
e5a7913
f0b49b0
9f4fd56
f0b49b0
 
9f4fd56
f0b49b0
 
 
 
 
 
e5a7913
f0b49b0
9f4fd56
e5a7913
 
 
9f4fd56
 
 
 
e5a7913
f0b49b0
e5a7913
9f4fd56
 
e5a7913
9f4fd56
f0b49b0
 
9f4fd56
e5a7913
9f4fd56
f0b49b0
 
9f4fd56
e5a7913
f0b49b0
9f4fd56
 
e5a7913
 
9f4fd56
 
 
 
f0b49b0
 
e5a7913
 
9f4fd56
 
 
f0b49b0
9f4fd56
 
 
f0b49b0
9f4fd56
 
f0b49b0
9f4fd56
f0b49b0
 
9f4fd56
 
 
 
e5a7913
 
9f4fd56
 
 
 
 
 
 
f0b49b0
9f4fd56
 
 
f0b49b0
9f4fd56
e5a7913
f0b49b0
9f4fd56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0b49b0
9f4fd56
e5a7913
9f4fd56
 
 
 
e5a7913
9f4fd56
 
 
 
 
 
f0b49b0
9f4fd56
f0b49b0
 
9f4fd56
 
 
 
 
f0b49b0
9f4fd56
 
 
 
f0b49b0
9f4fd56
f0b49b0
 
 
9f4fd56
f0b49b0
 
 
e5a7913
f0b49b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f4fd56
f0b49b0
 
 
 
 
9f4fd56
f0b49b0
 
 
 
 
9f4fd56
f0b49b0
 
 
 
 
9f4fd56
f0b49b0
 
 
 
e5a7913
f0b49b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5a7913
 
f0b49b0
 
 
 
 
 
e5a7913
f0b49b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f4fd56
f0b49b0
9f4fd56
f0b49b0
 
 
 
 
 
9f4fd56
f0b49b0
 
 
 
 
e5a7913
f0b49b0
 
 
 
 
 
 
 
 
 
 
 
 
 
9f4fd56
f0b49b0
 
 
 
 
 
e5a7913
f0b49b0
 
 
 
 
 
 
 
 
e5a7913
f0b49b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f4fd56
f0b49b0
 
 
 
 
9f4fd56
f0b49b0
 
 
 
 
9f4fd56
f0b49b0
 
 
 
e5a7913
 
 
9f4fd56
f0b49b0
 
 
 
 
 
 
 
9f4fd56
f0b49b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f4fd56
 
f0b49b0
 
9f4fd56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5a7913
9f4fd56
 
 
 
 
 
e5a7913
9f4fd56
 
 
 
 
 
 
 
 
 
e5a7913
f0b49b0
 
 
9f4fd56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5a7913
9f4fd56
 
e5a7913
9f4fd56
 
 
 
e5a7913
9f4fd56
 
 
 
 
 
 
 
 
 
e5a7913
9f4fd56
 
e5a7913
9f4fd56
 
 
 
 
e5a7913
 
 
 
 
 
 
 
 
 
 
9f4fd56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5a7913
9f4fd56
 
 
 
 
 
 
 
 
 
 
 
e5a7913
 
9f4fd56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5a7913
9f4fd56
 
 
 
 
 
 
f0b49b0
9f4fd56
 
 
 
f0b49b0
 
9f4fd56
 
 
 
 
f0b49b0
9f4fd56
f0b49b0
9f4fd56
e5a7913
f0b49b0
9f4fd56
 
 
 
 
e5a7913
9f4fd56
 
 
f0b49b0
9f4fd56
 
 
e5a7913
9f4fd56
 
 
 
 
 
 
e5a7913
 
 
 
 
9f4fd56
 
 
 
 
f0b49b0
 
9f4fd56
 
 
 
 
 
 
 
 
f0b49b0
9f4fd56
 
 
f0b49b0
9f4fd56
f0b49b0
9f4fd56
 
f0b49b0
 
9f4fd56
 
f0b49b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5a7913
f0b49b0
 
9f4fd56
f0b49b0
 
 
9f4fd56
 
 
 
 
 
f0b49b0
 
 
 
 
 
 
 
 
 
 
9f4fd56
e5a7913
 
 
f0b49b0
e5a7913
f0b49b0
9f4fd56
 
f0b49b0
 
9f4fd56
 
 
 
 
f0b49b0
 
 
 
 
 
 
 
 
 
 
9f4fd56
f0b49b0
 
 
e5a7913
f0b49b0
e5a7913
f0b49b0
e5a7913
f0b49b0
 
 
9f4fd56
 
 
 
 
e5a7913
 
9f4fd56
 
 
 
 
 
 
 
 
 
 
 
f0b49b0
 
 
 
 
e5a7913
f0b49b0
 
 
 
 
 
9f4fd56
f0b49b0
9f4fd56
f0b49b0
9f4fd56
 
 
 
f0b49b0
9f4fd56
 
 
 
 
 
 
f0b49b0
9f4fd56
 
 
 
e5a7913
9f4fd56
 
f0b49b0
9f4fd56
f0b49b0
9f4fd56
e5a7913
 
 
 
9f4fd56
f0b49b0
9f4fd56
 
 
f0b49b0
9f4fd56
 
 
 
 
 
 
 
 
e5a7913
 
 
9f4fd56
 
 
 
e5a7913
 
 
9f4fd56
 
 
f0b49b0
9f4fd56
f0b49b0
9f4fd56
 
 
 
e5a7913
9f4fd56
 
 
f0b49b0
9f4fd56
 
 
 
 
 
e5a7913
9f4fd56
 
 
e5a7913
9f4fd56
 
 
f0b49b0
9f4fd56
 
 
 
 
 
 
f0b49b0
9f4fd56
 
f0b49b0
9f4fd56
 
 
 
f0b49b0
9f4fd56
e5a7913
9f4fd56
 
 
 
 
 
 
e5a7913
9f4fd56
 
 
f0b49b0
 
9f4fd56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0b49b0
9f4fd56
e5a7913
9f4fd56
f0b49b0
 
 
 
 
 
9f4fd56
f0b49b0
 
 
 
 
 
9f4fd56
 
 
 
 
 
 
f0b49b0
 
 
 
 
 
 
 
 
 
 
e5a7913
f0b49b0
 
e5a7913
f0b49b0
 
 
 
 
 
 
e5a7913
f0b49b0
 
 
e5a7913
9f4fd56
e5a7913
9f4fd56
f0b49b0
9f4fd56
f0b49b0
 
9f4fd56
e5a7913
9f4fd56
 
 
 
 
f0b49b0
9f4fd56
 
f0b49b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f4fd56
f0b49b0
 
 
 
 
 
 
 
9f4fd56
f0b49b0
 
 
 
 
9f4fd56
f0b49b0
 
 
9f4fd56
f0b49b0
 
9f4fd56
f0b49b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5a7913
 
 
f0b49b0
 
 
 
 
 
 
9f4fd56
 
 
 
f0b49b0
 
e5a7913
f0b49b0
 
 
 
e5a7913
 
 
 
f0b49b0
e5a7913
f0b49b0
 
 
 
 
9f4fd56
f0b49b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5a7913
 
f0b49b0
 
 
 
 
 
 
 
9f4fd56
f0b49b0
 
 
 
 
 
 
e5a7913
f0b49b0
 
 
 
 
e5a7913
f0b49b0
 
 
 
 
 
 
 
 
 
 
 
 
 
9f4fd56
f0b49b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f4fd56
 
 
 
 
 
 
e5a7913
 
 
 
 
 
 
 
9f4fd56
 
 
 
e5a7913
f0b49b0
 
 
e5a7913
f0b49b0
 
 
 
 
 
 
e5a7913
 
f0b49b0
 
 
 
 
 
 
 
 
 
 
 
 
9f4fd56
 
 
e5a7913
 
f0b49b0
 
9f4fd56
 
 
 
e5a7913
f0b49b0
 
9f4fd56
f0b49b0
e5a7913
f0b49b0
9f4fd56
 
 
 
 
 
 
 
f0b49b0
9f4fd56
 
 
 
 
 
f0b49b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f4fd56
f0b49b0
 
 
 
 
 
9f4fd56
f0b49b0
 
 
 
9f4fd56
f0b49b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5a7913
9f4fd56
 
 
 
 
f0b49b0
9f4fd56
 
e5a7913
9f4fd56
 
 
 
e5a7913
9f4fd56
 
e5a7913
 
9f4fd56
f0b49b0
 
 
 
 
 
 
 
 
 
e5a7913
f0b49b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f4fd56
f0b49b0
 
 
 
 
 
9f4fd56
f0b49b0
9f4fd56
 
 
 
 
 
f0b49b0
 
 
 
 
 
 
 
 
 
 
 
 
 
e5a7913
f0b49b0
 
 
 
 
 
 
e5a7913
f0b49b0
9f4fd56
f0b49b0
 
 
 
 
 
 
 
 
 
 
e5a7913
f0b49b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5a7913
f0b49b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f4fd56
 
 
f0b49b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f4fd56
f0b49b0
 
 
 
 
9f4fd56
f0b49b0
 
 
 
9f4fd56
f0b49b0
9f4fd56
f0b49b0
 
 
9f4fd56
f0b49b0
 
 
 
 
 
 
 
 
9f4fd56
f0b49b0
9f4fd56
f0b49b0
 
 
 
 
 
 
 
9f4fd56
f0b49b0
 
 
 
9f4fd56
f0b49b0
 
9f4fd56
f0b49b0
 
 
9f4fd56
f0b49b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5a7913
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
"""
Adapted from
[MosaiclML](https://github.com/mosaicml/examples.git) and
[minGPT](https://github.com/karpathy/minGPT.git)
"""

from __future__ import annotations

import logging
import math
import sys
from abc import abstractmethod
from pathlib import Path
from typing import (
    Callable,
    Dict,
    List,
    NamedTuple,
    Optional,
    Sequence,
    Tuple,
    Union,
    Any,
)
from copy import deepcopy
import torch
import torch.backends.cuda
import torch.nn as nn
import torch.nn.functional as F
from torch import einsum
import einops
from transformers import PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast, ModelOutput

# from olmo.util import resource_path
from .configuration_molmo import (
    MolmoConfig,
    VisionBackboneConfig,
    VisionBackboneType,
    ImagePooling2DType,
    ImageProjectType,
    AttentionType,
    MolmoConfigurationError,
)

if sys.version_info.minor > 8:
    from collections.abc import MutableMapping
elif sys.version_info.minor == 8:
    from typing import MutableMapping
else:
    raise SystemExit("This script supports Python 3.8 or higher")


log = logging.getLogger(__name__)


def resource_path(
    folder: Union[str, Path],
    fname: str,
    local_cache: Optional[Union[str, Path]] = None,
) -> Path:
    if local_cache is not None and (local_path := Path(local_cache) / fname).is_file():
        log.info(f"Found local cache of {fname} at {local_path}")
        return local_path
    else:
        from cached_path import cached_path

        return cached_path(f"{str(folder).rstrip('/')}/{fname}")


def ensure_finite_(x: torch.Tensor, check_neg_inf: bool = True, check_pos_inf: bool = False):
    """
    Modify ``x`` in place to replace ``float("-inf")`` with the minimum value of the dtype when ``check_neg_inf``
    is ``True`` and to replace ``float("inf")`` with the maximum value of the dtype when ``check_pos_inf`` is ``True``.
    """
    if check_neg_inf:
        x.masked_fill_(x == float("-inf"), torch.finfo(x.dtype).min)
    if check_pos_inf:
        x.masked_fill_(x == float("inf"), torch.finfo(x.dtype).max)


class BufferCache(dict, MutableMapping[str, torch.Tensor]):
    """
    Cache for attention biases and other things that would normally be stored as buffers.
    We avoid using buffers because we've run into various issues doing so with FSDP.
    In general it appears the way FSDP handles buffers is not well-defined.
    It doesn't shard them but apparently it does synchronize them across processes, which we want to avoid
    since (A) it isn't necessary, and (B) we sometimes have `-inf` in these biases which might get turned into
    NaNs when they're synchronized due to casting or some other issue.
    """


def _non_meta_init_device(config: MolmoConfig) -> torch.device:
    if config.init_device is not None and config.init_device != "meta":
        return torch.device(config.init_device)
    else:
        return torch.device("cuda" if torch.cuda.is_available() else "cpu")


class Embedding(nn.Module):
    def __init__(
        self,
        num_embeddings: int,
        num_new_embeddings: int,
        features: int,
        device: Union[str, torch.device],
        initializer_range: float = 0.02,
        new_embed_initializer_range: float = 0.02,
    ):
        super().__init__()
        self.initializer_range = initializer_range
        self.new_embed_initializer_range = new_embed_initializer_range
        self.embedding = nn.Parameter(
            torch.zeros(num_embeddings, features, device=device),
        )
        self.new_embedding = nn.Parameter(
            torch.zeros(num_new_embeddings, features, device=device),
        )

    def reset_parameters(self):
        nn.init.normal_(self.embedding, std=self.initializer_range)
        nn.init.normal_(self.new_embedding, std=self.new_embed_initializer_range)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return F.embedding(x, torch.cat([self.embedding, self.new_embedding], dim=0))


class Dropout(nn.Dropout):
    def __init__(
        self,
        p: float = 0.5,
        inplace: bool = False,
        mask_p: float = 0,
        broadcast_dims: Sequence[int] = (),
    ):
        super().__init__(p, inplace)
        self.mask_p = mask_p
        self.broadcast_dims = broadcast_dims

    def forward(self, input: torch.Tensor, drop_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
        """
        :param input: A tensor of shape `(batch_size, seq_len, embed_dim)`
        :param drop_mask: A tensor of shape `(batch_size, seq_len)` with values of zero or one.
        """
        if self.p == 0.0 and (self.mask_p is None or self.mask_p == 0.0):
            return input
        else:
            if self.mask_p > 0.0 and self.training:
                assert drop_mask is not None
                drop_mask = drop_mask.to(input.dtype)
                keep_prob = 1.0 - self.p
                keep_prob2 = 1.0 - self.mask_p
                keep_prob = drop_mask * keep_prob2 + (1 - drop_mask) * keep_prob
                keep_prob = keep_prob.unsqueeze(-1)
                dropout_shape = list(input.shape)
                keep_prob = keep_prob.broadcast_to(dropout_shape)
                multiplier = input.new_empty(dropout_shape).bernoulli_(keep_prob)
                multiplier.div_(keep_prob)
                return input * multiplier
            elif self.p > 0.0 and len(self.broadcast_dims) > 0 and self.training:
                keep_prob = 1.0 - self.p
                dropout_shape = list(input.shape)
                for dim in self.broadcast_dims:
                    dropout_shape[dim] = 1
                keep = input.new_empty(dropout_shape).bernoulli_(keep_prob)
                multiplier = keep.broadcast_to(input.shape)
                multiplier.div_(keep_prob)
                input = input * multiplier
            else:
                return F.dropout(input, self.p, self.training, self.inplace)


class LayerNormBase(nn.Module):
    def __init__(
        self,
        config: MolmoConfig,
        *,
        size: Optional[int] = None,
        elementwise_affine: Optional[bool] = True,
        eps: float = 1e-05,
        weight_initializer: Optional[Callable] = torch.ones,
        bias_initializer: Optional[Callable] = torch.zeros,
    ):
        super().__init__()
        self.config = config
        self.eps = self.config.layer_norm_eps or eps
        self.normalized_shape = (size or config.d_model,)
        if elementwise_affine or (elementwise_affine is None and self.config.layer_norm_with_affine):
            self.weight = nn.Parameter(weight_initializer(self.normalized_shape, device=config.init_device))
            use_bias = self.config.bias_for_layer_norm
            if use_bias is None:
                use_bias = self.config.include_bias
            if use_bias:
                self.bias = nn.Parameter(bias_initializer(self.normalized_shape, device=config.init_device))
            else:
                self.register_parameter("bias", None)
        else:
            self.register_parameter("bias", None)
            self.register_parameter("weight", None)


class LayerNorm(LayerNormBase):
    """
    The default :class:`LayerNorm` implementation which can optionally run in low precision.
    """

    def __init__(
        self,
        config: MolmoConfig,
        size: Optional[int] = None,
        low_precision: bool = False,
        elementwise_affine: Optional[bool] = None,
        eps: float = 1e-05,
    ):
        super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps)
        self.low_precision = low_precision

    def _cast_if_autocast_enabled(self, tensor: torch.Tensor, dtype: Optional[torch.dtype] = None) -> torch.Tensor:
        # NOTE: `is_autocast_enabled()` only checks for CUDA autocast, so we use the separate function
        # `is_autocast_cpu_enabled()` for CPU autocast.
        # See https://github.com/pytorch/pytorch/issues/110966.
        if tensor.device.type == "cuda" and torch.is_autocast_enabled():
            return tensor.to(dtype=dtype if dtype is not None else torch.get_autocast_gpu_dtype())
        elif tensor.device.type == "cpu" and torch.is_autocast_cpu_enabled():
            return tensor.to(dtype=dtype if dtype is not None else torch.get_autocast_cpu_dtype())
        else:
            return tensor

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self.low_precision:
            module_device = x.device
            downcast_x = self._cast_if_autocast_enabled(x)
            downcast_weight = (
                self._cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
            )
            downcast_bias = self._cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias
            with torch.autocast(enabled=False, device_type=module_device.type):
                return F.layer_norm(
                    downcast_x, self.normalized_shape, weight=downcast_weight, bias=downcast_bias, eps=self.eps
                )
        else:
            return F.layer_norm(x, self.normalized_shape, weight=self.weight, bias=self.bias, eps=self.eps)

    def reset_parameters(self):
        if self.weight is not None:
            torch.nn.init.ones_(self.weight)  # type: ignore
        if self.bias is not None:
            torch.nn.init.zeros_(self.bias)  # type: ignore


class RMSLayerNorm(LayerNormBase):
    """
    RMS layer norm, a simplified :class:`LayerNorm` implementation
    """

    def __init__(
        self,
        config: MolmoConfig,
        size: Optional[int] = None,
        elementwise_affine: Optional[bool] = None,
        eps: float = 1e-5,
    ):
        super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        with torch.autocast(enabled=False, device_type=x.device.type):
            og_dtype = x.dtype
            x = x.to(torch.float32)
            variance = x.pow(2).mean(-1, keepdim=True)
            x = x * torch.rsqrt(variance + self.eps)
            x = x.to(og_dtype)

        if self.weight is not None:
            if self.bias is not None:
                return self.weight * x + self.bias
            else:
                return self.weight * x
        else:
            return x

    def _cast_if_autocast_enabled(self, tensor: torch.Tensor, dtype: Optional[torch.dtype] = None) -> torch.Tensor:
        # NOTE: `is_autocast_enabled()` only checks for CUDA autocast, so we use the separate function
        # `is_autocast_cpu_enabled()` for CPU autocast.
        # See https://github.com/pytorch/pytorch/issues/110966.
        if tensor.device.type == "cuda" and torch.is_autocast_enabled():
            return tensor.to(dtype=dtype if dtype is not None else torch.get_autocast_gpu_dtype())
        elif tensor.device.type == "cpu" and torch.is_autocast_cpu_enabled():
            return tensor.to(dtype=dtype if dtype is not None else torch.get_autocast_cpu_dtype())
        else:
            return tensor

    def reset_parameters(self):
        if self.weight is not None:
            torch.nn.init.ones_(self.weight)  # type: ignore
        if self.bias is not None:
            torch.nn.init.zeros_(self.bias)  # type: ignore


class RotaryEmbedding(nn.Module):
    """
    [Rotary positional embeddings (RoPE)](https://arxiv.org/abs/2104.09864).
    """

    def __init__(self, config: MolmoConfig, cache: BufferCache):
        super().__init__()
        self.config = config
        self.__cache = cache
        # Warm up cache.
        self.get_rotary_embedding(
            config.max_position_embeddings or config.max_sequence_length, _non_meta_init_device(config)
        )

    def get_rotary_embedding(self, seq_len: int, device: torch.device) -> Tuple[torch.Tensor, torch.Tensor]:
        if (
            (pos_sin := self.__cache.get("rope_pos_sin")) is not None
            and (pos_cos := self.__cache.get("rope_pos_cos")) is not None
            and pos_sin.shape[-2] >= seq_len
            and pos_cos.shape[-2] >= seq_len
        ):
            if pos_sin.device != device:
                pos_sin = pos_sin.to(device)
                self.__cache["rope_pos_sin"] = pos_sin
            if pos_cos.device != device:
                pos_cos = pos_cos.to(device)
                self.__cache["rope_pos_cos"] = pos_cos
            return pos_sin[:, :, :seq_len, :], pos_cos[:, :, :seq_len, :]

        with torch.autocast(device.type, enabled=False):
            dim = (
                self.config.head_dim
                if self.config.head_dim is not None
                else self.config.d_model // self.config.n_heads
            )
            inv_freq = 1.0 / (
                self.config.rope_theta ** (torch.arange(0, dim, 2, device=device, dtype=torch.float) / dim)
            )
            seq = torch.arange(seq_len, device=device, dtype=torch.float)
            freqs = einsum("i , j -> i j", seq, inv_freq)
            if self.config.rope_impl == "cockatoo":
                positions = freqs.repeat_interleave(2, dim=-1)
            else:
                positions = torch.cat((freqs, freqs), dim=-1)
            pos_sin, pos_cos = positions.sin()[None, None, :, :], positions.cos()[None, None, :, :]
        self.__cache["rope_pos_sin"] = pos_sin
        self.__cache["rope_pos_cos"] = pos_cos
        return pos_sin, pos_cos

    def rotate_half(self, x: torch.Tensor) -> torch.Tensor:
        B, nh, T, hs = x.size()
        x = x.view(B, nh, T, 2, hs // 2)
        x1, x2 = x.unbind(dim=-2)
        return torch.cat((-x2, x1), dim=-1)

    def rotate_every_two(self, x: torch.Tensor) -> torch.Tensor:
        B, nh, T, hs = x.size()
        x = x.view(B, nh, T, hs // 2, 2)
        x1, x2 = x.unbind(dim=-1)
        x = torch.stack((-x2, x1), dim=-1)
        return x.view(B, nh, T, hs)

    def apply_rotary_pos_emb(self, pos_sin: torch.Tensor, pos_cos: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
        if self.config.rope_impl == "cockatoo":
            return ((t * pos_cos) + (self.rotate_every_two(t) * pos_sin)).to(t.dtype)
        else:
            return ((t * pos_cos) + (self.rotate_half(t) * pos_sin)).to(t.dtype)

    def forward(
        self, q: torch.Tensor, k: torch.Tensor, position_ids: Optional[torch.Tensor] = None
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        if self.config.rope_full_precision:
            q_, k_ = q.float(), k.float()
        else:
            q_, k_ = q, k

        with torch.autocast(q.device.type, enabled=False):
            batch_size = q_.shape[0]
            query_len, key_len = q_.shape[-2], k_.shape[-2]  # could be different if layer_past not None
            if position_ids is not None:
                freqs_cis_len = self.config.max_position_embeddings or self.config.max_sequence_length
            else:
                freqs_cis_len = key_len
            pos_sin, pos_cos = self.get_rotary_embedding(freqs_cis_len, q_.device)
            pos_sin = pos_sin.type_as(q_)
            pos_cos = pos_cos.type_as(q_)
            if position_ids is not None:
                assert query_len == key_len, "Query and key lengths must be equal when using position IDs."
                pos_sin = pos_sin[0, 0][position_ids].view((batch_size, 1, key_len, pos_sin.shape[-1]))
                pos_cos = pos_cos[0, 0][position_ids].view((batch_size, 1, key_len, pos_cos.shape[-1]))
            q_ = self.apply_rotary_pos_emb(
                pos_sin[:, :, key_len - query_len : key_len, :],
                pos_cos[:, :, key_len - query_len : key_len, :],
                q_,
            )
            k_ = self.apply_rotary_pos_emb(pos_sin, pos_cos, k_)
        return q_.type_as(q), k_.type_as(k)


class Activation(nn.Module):
    def __init__(self, config: MolmoConfig):
        super().__init__()
        self.config = config

    @abstractmethod
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        raise NotImplementedError

    @property
    @abstractmethod
    def output_multiplier(self) -> float:
        raise NotImplementedError


class GELU(nn.GELU):
    @property
    def output_multiplier(self) -> float:
        return 1.0


class QuickGELU(Activation):
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return x * torch.sigmoid(1.702 * x)

    @property
    def output_multiplier(self) -> float:
        return 1.0


class ReLU(nn.ReLU):
    @property
    def output_multiplier(self) -> float:
        return 1.0


class SiLU(nn.SiLU):
    @property
    def output_multiplier(self) -> float:
        return 1.0


class SwiGLU(Activation):
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x, gate = x.chunk(2, dim=-1)
        return F.silu(gate) * x

    @property
    def output_multiplier(self) -> float:
        return 0.5


class LlamaSwiGLU(Activation):
    def forward(self, x1: torch.Tensor, x2: torch.Tensor) -> torch.Tensor:
        return F.silu(x1) * x2

    @property
    def output_multiplier(self) -> float:
        return 0.5


def causal_attention_bias(seq_len: int, device: torch.device) -> torch.FloatTensor:
    att_bias = torch.triu(
        torch.ones(seq_len, seq_len, device=device, dtype=torch.float),
        diagonal=1,
    )
    att_bias.masked_fill_(att_bias == 1, torch.finfo(att_bias.dtype).min)
    return att_bias.view(1, 1, seq_len, seq_len)  # type: ignore


def get_causal_attention_bias(cache: BufferCache, seq_len: int, device: torch.device) -> torch.Tensor:
    if (causal_bias := cache.get("causal_attention_bias")) is not None and causal_bias.shape[-1] >= seq_len:
        if causal_bias.device != device:
            causal_bias = causal_bias.to(device)
            cache["causal_attention_bias"] = causal_bias
        return causal_bias
    with torch.autocast(device.type, enabled=False):
        causal_bias = causal_attention_bias(seq_len, device)
    cache["causal_attention_bias"] = causal_bias
    return causal_bias


class MolmoAttention(nn.Module):
    def __init__(self, config: MolmoConfig, cache: BufferCache):
        super().__init__()
        self.config = config
        self.__cache = cache
        self.rotary_emb = RotaryEmbedding(config, self.__cache)
        self.k_norm: Optional[LayerNormBase] = None
        self.q_norm: Optional[LayerNormBase] = None
        self.hidden_size = (
            config.mlp_hidden_size if config.mlp_hidden_size is not None else config.mlp_ratio * config.d_model
        )

        if config.attention_layer_norm:
            assert config.n_kv_heads is not None
            self.k_norm = LayerNormBase.build(
                config,
                size=(config.d_model // config.n_heads) * config.n_kv_heads,
                elementwise_affine=config.attention_layer_norm_with_affine,
            )
            self.q_norm = LayerNormBase.build(config, elementwise_affine=config.attention_layer_norm_with_affine)

        # Make sure QKV clip coefficient is positive, otherwise it's not well-defined.
        if config.clip_qkv is not None:
            assert config.clip_qkv > 0

        # Activation function
        self.act = SwiGLU(config)
        assert (self.act.output_multiplier * self.hidden_size) % 1 == 0

        # Attention output projection.
        input_dim = config.head_dim * config.n_heads if config.head_dim is not None else config.d_model
        head_dim = config.d_model // config.n_heads
        self.fused_dims = (
            config.d_model,
            config.n_kv_heads * head_dim,
            config.n_kv_heads * head_dim,
        )
        self.att_proj = nn.Linear(
            config.d_model,
            sum(self.fused_dims),
            bias=config.include_bias or config.qkv_bias,
            device=config.init_device,
        )
        self.attn_out = nn.Linear(input_dim, config.d_model, bias=config.include_bias, device=config.init_device)
        self.attn_norm = RMSLayerNorm(config, size=config.d_model, eps=config.layer_norm_eps)

        self.flash_attn_func = None
        if self.config.attention_type == AttentionType.flash:
            try:
                from flash_attn import flash_attn_func

                self.flash_attn_func = flash_attn_func
            except ModuleNotFoundError:
                pass

    def attention(
        self,
        q: torch.Tensor,
        k: torch.Tensor,
        v: torch.Tensor,
        attention_bias: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        drop_mask: Optional[torch.Tensor] = None,
        layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        use_cache: bool = False,
    ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
        B, T, C = q.size()  # batch size, sequence length, d_model
        dtype = k.dtype

        # Optionally apply layer norm to keys and queries.
        if self.q_norm is not None and self.k_norm is not None:
            q = self.q_norm(q).to(dtype=dtype)
            k = self.k_norm(k).to(dtype=dtype)

        # Move head forward to be next to the batch dim.
        # shape: (B, nh, T, hs)
        q = q.view(B, T, self.config.n_heads, C // self.config.n_heads).transpose(1, 2)
        # shape: (B, n_kv_h, T, hs)
        k = k.view(B, T, self.config.n_kv_heads, C // self.config.n_heads).transpose(1, 2)
        # shape: (B, n_kv_h, T, hs)
        v = v.view(B, T, self.config.n_kv_heads, C // self.config.n_heads).transpose(1, 2)

        if self.config.use_position_ids and self.config.rope:
            # Apply rotary embeddings
            q, k = self.rotary_emb(q, k, position_ids=position_ids)

        if layer_past is not None:
            past_key, past_value = layer_past
            k = torch.cat((past_key.to(k.device), k), dim=-2)
            v = torch.cat((past_value.to(v.device), v), dim=-2)

        present = (k, v) if use_cache else None
        query_len, key_len = q.shape[-2], k.shape[-2]  # could be different if layer_past not None

        if not self.config.use_position_ids and self.config.rope:
            # Apply rotary embeddings
            q, k = self.rotary_emb(q, k)

        if attention_bias is not None:
            # Resize and cast attention bias.
            # The current dtype of the attention bias might not match the dtype that the SDP attn function will
            # run in if AMP is enabled, and this can be a problem if some tokens are masked out due to padding
            # as down-casting the attention bias to the autocast precision will result in -infs, which will
            # cause the SDP attn function to produce NaNs.
            attention_bias = self._cast_attn_bias(
                attention_bias[:, :, key_len - query_len : key_len, :key_len], dtype
            )

        # Get the attention scores.
        # shape: (B, nh, T, hs)
        att = self._scaled_dot_product_attention(
            q,
            k,
            v,
            attn_mask=attention_bias,
            drop_mask=drop_mask,
            dropout_p=0.0 if not self.training else self.config.attention_dropout,
            response_dropout_p=0.0 if not self.training else self.config.response_attention_dropout,
            is_causal=attention_bias is None,
        )

        # Re-assemble all head outputs side-by-side.
        att = att.transpose(1, 2).contiguous().view(B, T, C)

        # Apply output projection.
        return self.attn_out(att), present

    @classmethod
    def _cast_attn_bias(cls, bias: torch.Tensor, input_dtype: torch.dtype) -> torch.Tensor:
        target_dtype = input_dtype
        # NOTE: `is_autocast_enabled()` only checks for CUDA autocast, so we use the separate function
        # `is_autocast_cpu_enabled()` for CPU autocast.
        # See https://github.com/pytorch/pytorch/issues/110966.
        if bias.device.type == "cuda" and torch.is_autocast_enabled():
            target_dtype = torch.get_autocast_gpu_dtype()
        elif bias.device.type == "cpu" and torch.is_autocast_cpu_enabled():
            target_dtype = torch.get_autocast_cpu_dtype()
        if bias.dtype != target_dtype:
            bias = bias.to(target_dtype)
            ensure_finite_(bias, check_neg_inf=True, check_pos_inf=False)
        return bias

    def _scaled_dot_product_attention(
        self,
        q: torch.Tensor,
        k: torch.Tensor,
        v: torch.Tensor,
        attn_mask: Optional[torch.Tensor] = None,
        drop_mask: Optional[torch.Tensor] = None,
        dropout_p: float = 0.0,
        response_dropout_p: float = 0.0,
        is_causal: bool = False,
    ) -> torch.Tensor:
        """
        Computes scaled dot product attention on query, key and value tensors, using an optional
        attention mask if passed, and applying dropout if a probability greater than 0.0 is specified.
        """
        if attn_mask is not None:
            attn_mask = attn_mask.to(q.device)

        if self.flash_attn_func is not None and attn_mask is None:
            r = self.flash_attn_func(
                q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), dropout_p=dropout_p, causal=is_causal
            )
            return r.transpose(1, 2)
        else:
            # torch's sdpa doesn't support GQA, so we're doing this
            assert k.size(1) == v.size(1)
            num_kv_heads = k.size(1)
            num_q_heads = q.size(1)
            if num_q_heads != num_kv_heads:
                assert num_q_heads % num_kv_heads == 0
                k = k.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads)
                v = v.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads)

            return F.scaled_dot_product_attention(
                q,
                k,
                v,
                attn_mask=attn_mask,
                dropout_p=dropout_p,
                is_causal=is_causal,
            )

    def forward(self, x, attention_bias, position_ids, drop_mask, layer_past, use_cache):
        if not self.config.norm_after:
            atten_in = self.attn_norm(x)
        else:
            atten_in = x

        qkv = self.att_proj(atten_in)

        if self.config.clip_qkv is not None:
            qkv.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)

        q, k, v = qkv.split(self.fused_dims, dim=-1)

        # Get attention scores.
        att, cache = self.attention(
            q,
            k,
            v,
            attention_bias,
            position_ids=position_ids,
            drop_mask=drop_mask,
            layer_past=layer_past,
            use_cache=use_cache,
        )

        if self.config.norm_after:
            att = self.attn_norm(att)

        return att, cache


class MolmoMLP(nn.Module):
    def __init__(self, config: MolmoConfig):
        # Feed-forward input projection.
        super().__init__()
        self.config = config
        self.hidden_size = (
            config.mlp_hidden_size if config.mlp_hidden_size is not None else config.mlp_ratio * config.d_model
        )
        self.act = SwiGLU(config)
        self.ff_proj = nn.Linear(
            config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device
        )
        self.ff_out = nn.Linear(
            int(self.act.output_multiplier * self.hidden_size),
            config.d_model,
            bias=config.include_bias,
            device=config.init_device,
        )
        self.ff_norm = RMSLayerNorm(config, size=config.d_model, eps=config.layer_norm_eps)

    def forward(self, x):
        if not self.config.norm_after:
            x = self.ff_norm(x)

        x = self.ff_proj(x)
        x = self.act(x)
        x = self.ff_out(x)

        if self.config.norm_after:
            x = self.ff_norm(x)

        return x


class MolmoDecoderLayer(nn.Module):
    """
    A base class for transformer block implementations.
    """

    def __init__(self, layer_id: int, config: MolmoConfig, cache: BufferCache):
        super().__init__()
        self.self_attn = MolmoAttention(config, cache)
        self.mlp = MolmoMLP(config)
        self.layer_id = layer_id
        self.config = config
        self.hidden_size = (
            config.mlp_hidden_size if config.mlp_hidden_size is not None else config.mlp_ratio * config.d_model
        )
        self.__cache = cache
        if config.head_dim is None:
            assert config.d_model % config.n_heads == 0

        # Dropout.
        self.dropout = Dropout(config.residual_dropout, mask_p=config.response_residual_dropout)

    def forward(
        self,
        x: torch.Tensor,
        attention_bias: Optional[torch.FloatTensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        drop_mask: Optional[torch.Tensor] = None,
        layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        use_cache: bool = False,
    ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
        """Get query, key, value projections.
        shape:
            for regular attn q, k, v: (batch_size, seq_len, d_model)
            for multi-query attn q: (batch_size, seq_len, d_model)
                              k, v: (batch_size, seq_len, d_model // n_heads)
            for group query attn q: (batch_size, seq_len, d_model)
                            k, v: (batch_size, seq_len, d_model // n_kv_heads)
        """

        att, cache = self.self_attn(
            x,
            attention_bias=attention_bias,
            position_ids=position_ids,
            drop_mask=drop_mask,
            layer_past=layer_past,
            use_cache=use_cache,
        )
        x = x + self.dropout(att, drop_mask=drop_mask)
        og_x = x
        x = self.mlp(x)
        x = self.dropout(x, drop_mask=drop_mask)
        x = og_x + x

        return x, cache


class MolmoOutput(NamedTuple):
    attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]]
    """
    Attention keys and values from each block.
    """

    hidden_states: Optional[Tuple[torch.Tensor]]
    """
    Hidden states from each block.
    """

    last_hidden_states: torch.Tensor


class MultiHeadDotProductAttention(nn.Module):
    def __init__(self, config: MolmoConfig, use_bias: bool = True, is_vit_layer: Optional[bool] = True):
        super().__init__()
        self.config = config
        self.use_bias = use_bias

        v_cfg = config.vision_backbone
        self.embed_dim = v_cfg.image_emb_dim
        self.num_heads = v_cfg.image_num_heads
        self.head_dim = v_cfg.image_head_dim
        self.num_key_value_heads = v_cfg.image_num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.initializer_range = v_cfg.initializer_range
        self.is_vit_layer = is_vit_layer

        nlayers = 1 if (is_vit_layer or config.vit_layers is None) else len(config.vit_layers)

        self.wq = nn.Linear(
            nlayers * self.embed_dim,
            self.num_heads * self.head_dim,
            bias=use_bias,
            device=config.init_device,
        )
        self.wk = nn.Linear(
            nlayers * self.embed_dim,
            self.num_key_value_heads * self.head_dim,
            bias=use_bias,
            device=config.init_device,
        )
        self.wv = nn.Linear(
            nlayers * self.embed_dim,
            self.num_key_value_heads * self.head_dim,
            bias=use_bias,
            device=config.init_device,
        )
        self.wo = nn.Linear(
            self.num_heads * self.head_dim,
            self.embed_dim,
            bias=use_bias,
            device=config.init_device,
        )
        self.attention_dropout: Optional[Dropout] = None
        if v_cfg.attention_dropout > 0:
            self.attention_dropout = Dropout(v_cfg.attention_dropout, broadcast_dims=(0, 1))
        self.residual_dropout = Dropout(v_cfg.residual_dropout)

    def reset_parameters(self):
        nn.init.normal_(self.wq.weight, std=self.initializer_range)
        nn.init.normal_(self.wk.weight, std=self.initializer_range)
        nn.init.normal_(self.wv.weight, std=self.initializer_range)
        nn.init.normal_(self.wo.weight, std=self.initializer_range)
        if self.use_bias:
            nn.init.constant_(self.wq.bias, 0)
            nn.init.constant_(self.wk.bias, 0)
            nn.init.constant_(self.wv.bias, 0)
            nn.init.constant_(self.wo.bias, 0)

    def _split_heads(self, hidden_states, num_heads) -> torch.Tensor:
        return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim))

    def _merge_heads(self, hidden_states) -> torch.Tensor:
        return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))

    def forward(self, inputs_q: torch.Tensor, inputs_kv: Optional[torch.Tensor] = None) -> torch.Tensor:
        if inputs_kv is not None:
            inputs_k = inputs_kv
            inputs_v = inputs_kv
        else:
            inputs_k = inputs_q
            inputs_v = inputs_q

        xq, xk, xv = self.wq(inputs_q), self.wk(inputs_k), self.wv(inputs_v)

        xq = self._split_heads(xq, self.num_heads)
        xk = self._split_heads(xk, self.num_key_value_heads)
        xv = self._split_heads(xv, self.num_key_value_heads)

        if self.num_heads != self.num_key_value_heads:
            xk = xk.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads)
            xv = xv.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads)

        og_dtype = xq.dtype

        if self.config.float32_attention:
            xq = xq.to(torch.float)
            xk = xk.to(torch.float)
            xv = xv.to(torch.float)

        if self.config.attention_type == AttentionType.direct:
            attn_weights = torch.einsum("...qhd,...khd->...hqk", xq / math.sqrt(xq.size(-1)), xk)
            attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(xq.dtype)
            if self.attention_dropout is not None:
                attn_weights = self.attention_dropout(attn_weights)
            attn_output = torch.einsum("...hqk,...khd->...qhd", attn_weights.to(xv.dtype), xv)

        elif self.config.attention_type == AttentionType.sdpa:
            attn_output = F.scaled_dot_product_attention(
                xq.transpose(1, 2).contiguous(),
                xk.transpose(1, 2).contiguous(),
                xv.transpose(1, 2).contiguous(),
                is_causal=False,
                dropout_p=self.config.vision_backbone.attention_dropout,
            ).transpose(1, 2)
        else:
            raise NotImplementedError(self.config.attention_type)
        attn_output = attn_output.to(og_dtype)
        attn_output = self._merge_heads(attn_output)
        attn_output = self.wo(attn_output)
        attn_output = self.residual_dropout(attn_output)

        return attn_output


class MultiHeadAttentionPool(nn.Module):
    def __init__(
        self,
        config: MolmoConfig,
        factor: int = 1,
        use_bias: bool = True,
        dropout: bool = True,
        output_layer: bool = True,
        mean_residual: bool = False,
        query: str = "mean",
        is_vit_layer: Optional[bool] = True,
    ):
        super().__init__()
        self.config = config
        self.factor = factor
        self.use_bias = use_bias
        self.dropout = dropout
        self.output_layer = output_layer
        self.mean_residual = mean_residual
        self.query = query

        v_cfg = config.vision_backbone
        input_dim = v_cfg.image_emb_dim
        self.embed_dim = v_cfg.image_emb_dim * factor
        self.num_heads = v_cfg.image_num_heads
        self.head_dim = v_cfg.image_head_dim * factor
        self.num_key_value_heads = v_cfg.image_num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.initializer_range = v_cfg.initializer_range

        nlayers = 1 if (is_vit_layer or config.vit_layers is None) else len(config.vit_layers)

        if query != "vector":
            self.wq = nn.Linear(
                nlayers * input_dim,
                self.num_heads * self.head_dim,
                bias=use_bias,
                device=config.init_device,
            )
        self.wk = nn.Linear(
            nlayers * input_dim,
            self.num_key_value_heads * self.head_dim,
            bias=use_bias,
            device=config.init_device,
        )
        self.wv = nn.Linear(
            nlayers * input_dim,
            self.num_key_value_heads * self.head_dim,
            bias=use_bias,
            device=config.init_device,
        )

        if query == "vector":
            self.attention_query = nn.Parameter(
                torch.zeros(
                    1,
                    self.num_key_value_heads * self.head_dim,
                    device=config.init_device,
                ),
            )

        if output_layer:
            self.wo = nn.Linear(
                self.num_heads * self.head_dim,
                self.embed_dim,
                bias=use_bias,
                device=config.init_device,
            )
        self.attention_dropout = Dropout(v_cfg.attention_dropout, broadcast_dims=(0, 1))
        if dropout:
            self.residual_dropout = Dropout(v_cfg.residual_dropout)

    def reset_parameters(self):
        if self.query != "vector":
            nn.init.normal_(self.wq.weight, std=self.initializer_range)
        nn.init.normal_(self.wk.weight, std=self.initializer_range)
        nn.init.normal_(self.wv.weight, std=self.initializer_range)
        if self.output_layer:
            nn.init.normal_(self.wo.weight, std=self.initializer_range)
        if self.use_bias:
            if self.query != "vector":
                nn.init.constant_(self.wq.bias, 0)
            nn.init.constant_(self.wk.bias, 0)
            nn.init.constant_(self.wv.bias, 0)
            if self.output_layer:
                nn.init.constant_(self.wo.bias, 0)
        if self.query == "vector":
            nn.init.normal_(self.attention_query, std=self.initializer_range)

    def _split_heads(self, hidden_states, num_heads):
        return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim))

    def _merge_heads(self, hidden_states):
        return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))

    def forward(self, inputs_kv: torch.Tensor) -> torch.Tensor:
        xk, xv = self.wk(inputs_kv), self.wv(inputs_kv)

        if self.query == "mean":
            inputs_q = inputs_kv.mean(dim=1, keepdim=True)
            xq = self.wq(inputs_q)
        elif self.query == "first":
            inputs_q = inputs_kv[:, :1]
            xq = self.wq(inputs_q)
        elif self.query == "vector":
            xq = self.attention_query.expand(inputs_kv.size(0), -1, -1)
        elif self.query == "constant":
            inputs_q = torch.ones_like(inputs_kv[:, :1]) / math.sqrt(inputs_kv.shape[-1])
            xq = self.wq(inputs_q)
        else:
            raise ValueError(f"Unknown query type: {self.query}")

        xq = self._split_heads(xq, self.num_heads)
        xk = self._split_heads(xk, self.num_key_value_heads)
        xv = self._split_heads(xv, self.num_key_value_heads)

        if self.num_heads != self.num_key_value_heads:
            xk = xk.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads)
            xv = xv.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads)

        xq = xq.to(torch.float)
        xk = xk.to(torch.float)

        xq = xq / math.sqrt(xq.size(-1))
        attn_weights = torch.einsum("...qhd,...khd->...hqk", xq, xk)

        attn_weights = F.softmax(attn_weights, dim=-1).to(xq.dtype)

        attn_weights = self.attention_dropout(attn_weights).to(xv.dtype)

        attn_output = torch.einsum("...hqk,...khd->...qhd", attn_weights, xv)
        attn_output = self._merge_heads(attn_output)
        if self.output_layer:
            attn_output = self.wo(attn_output)
        if self.dropout:
            attn_output = self.residual_dropout(attn_output)
        if self.mean_residual:
            attn_output += inputs_kv.mean(dim=1, keepdim=True)

        return attn_output


class ViTMLP(nn.Module):
    def __init__(self, config: MolmoConfig):
        super().__init__()
        self.config = config
        v_cfg = config.vision_backbone

        self.w1 = nn.Linear(
            v_cfg.image_emb_dim,
            v_cfg.image_mlp_dim,
            bias=True,
            device=config.init_device,
        )
        # Activation function.
        cfg = deepcopy(config)
        cfg.activation_type = v_cfg.image_mlp_activations
        self.act = QuickGELU(cfg)
        self.w2 = nn.Linear(
            v_cfg.image_mlp_dim,
            v_cfg.image_emb_dim,
            bias=True,
            device=config.init_device,
        )

    def reset_parameters(self):
        v_cfg = self.config.vision_backbone
        nn.init.trunc_normal_(self.w1.weight, std=math.sqrt(1 / v_cfg.image_emb_dim), a=-2.0, b=2.0)
        nn.init.trunc_normal_(self.w2.weight, std=math.sqrt(1 / v_cfg.image_mlp_dim), a=-2.0, b=2.0)
        nn.init.zeros_(self.w1.bias)
        nn.init.zeros_(self.w2.bias)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.w1(x)
        x = self.act(x)
        x = self.w2(x)
        return x


class MLP(nn.Module):
    def __init__(self, config: MolmoConfig, input_dim: int, dropout: float = 0.0):
        super().__init__()
        self.config = config
        self.hidden_size = (
            config.mlp_hidden_size if config.mlp_hidden_size is not None else config.mlp_ratio * config.d_model
        )
        self.initializer_range = config.initializer_range

        self.w1 = nn.Linear(
            input_dim,
            self.hidden_size // 2,
            bias=False,
            device=config.init_device,
        )
        self.w2 = nn.Linear(
            self.hidden_size // 2,
            config.d_model,
            bias=False,
            device=config.init_device,
        )
        self.w3 = nn.Linear(
            input_dim,
            self.hidden_size // 2,
            bias=False,
            device=config.init_device,
        )
        # `MLP` assume the activation takes two inputs, so it must be a 'llama' version.
        self.act = LlamaSwiGLU(config)
        self.dropout = Dropout(dropout)

    def reset_parameters(self):
        nn.init.normal_(self.w1.weight, std=self.initializer_range)
        nn.init.normal_(self.w2.weight, std=self.initializer_range)
        nn.init.normal_(self.w3.weight, std=self.initializer_range)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.w2(self.act(self.w1(x), self.w3(x)))
        x = self.dropout(x)
        return x


class Residual(nn.Module):
    def __init__(self, submodule: nn.Module):
        super().__init__()
        self.submodule = submodule

    def reset_parameters(self):
        self.submodule.reset_parameters()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return x + self.submodule(x)


class LayerNormFp32(nn.LayerNorm):
    """Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back).
    Derived from https://github.com/mlfoundations/open_clip/blob/main/src/open_clip/transformer.py.
    """

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        orig_type = x.dtype
        if self.training:
            x = F.layer_norm(x.to(torch.float32), self.normalized_shape, self.weight, self.bias, self.eps)
        else:
            x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
        return x.to(orig_type)


class ResidualAttentionBlock(nn.Module):
    def __init__(self, config: MolmoConfig):
        super().__init__()
        self.config = config

        v_cfg = config.vision_backbone
        self.attention = MultiHeadDotProductAttention(config)
        self.feed_forward = ViTMLP(config)
        self.attention_norm = nn.LayerNorm(
            v_cfg.image_emb_dim,
            eps=v_cfg.image_norm_eps,
            device=config.init_device,
        )
        self.ffn_norm = nn.LayerNorm(
            v_cfg.image_emb_dim,
            eps=v_cfg.image_norm_eps,
            device=config.init_device,
        )

    def reset_parameters(self):
        self.attention.reset_parameters()
        self.feed_forward.reset_parameters()
        self.attention_norm.reset_parameters()
        self.ffn_norm.reset_parameters()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = x + self.attention(self.attention_norm(x))
        x = x + self.feed_forward(self.ffn_norm(x))
        return x


class BlockCollection(nn.Module):
    def __init__(self, config: MolmoConfig):
        super().__init__()
        self.config = config

        v_cfg = config.vision_backbone
        self.resblocks = nn.ModuleList([ResidualAttentionBlock(config) for _ in range(v_cfg.image_num_layers)])

    def reset_parameters(self):
        for r in self.resblocks:
            r.reset_parameters()

    def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
        hidden_states = []
        for r in self.resblocks:
            x = r(x)
            hidden_states.append(x)
        return hidden_states


def _expand_token(token, batch_size: int):
    return token.view(1, 1, -1).expand(batch_size, -1, -1)


class VisionTransformer(nn.Module):
    def __init__(self, config: MolmoConfig):
        super().__init__()
        self.config = config

        v_cfg = config.vision_backbone
        # class embeddings and positional embeddings
        self.scale = v_cfg.image_emb_dim**-0.5
        self.class_embedding = nn.Parameter(
            torch.zeros(v_cfg.image_emb_dim, device=config.init_device),
        )
        self.num_prefix_tokens: int = 1
        self.positional_embedding = nn.Parameter(
            torch.zeros(v_cfg.image_num_pos, v_cfg.image_emb_dim, device=config.init_device),
        )

        image_patch_size = v_cfg.image_patch_size
        self.patch_embedding = nn.Linear(
            image_patch_size * image_patch_size * 3,
            v_cfg.image_emb_dim,
            bias=False,
            device=config.init_device,
        )

        self.pre_ln = LayerNormFp32(
            v_cfg.image_emb_dim,
            eps=v_cfg.image_norm_eps,
            device=config.init_device,
        )

        self.transformer = BlockCollection(config)

    def reset_parameters(self):
        nn.init.normal_(self.class_embedding, std=self.scale)
        nn.init.normal_(self.positional_embedding, std=self.scale)
        nn.init.normal_(self.patch_embedding.weight, std=0.02)
        self.pre_ln.reset_parameters()
        self.transformer.reset_parameters()

    def add_pos_emb(self, x: torch.Tensor, patch_num: int) -> torch.Tensor:
        cls_emb = self.positional_embedding[0:1]
        pos_emb = self.positional_embedding[1:]

        pos_emb = pos_emb.reshape(
            (int(math.sqrt(pos_emb.shape[0])), int(math.sqrt(pos_emb.shape[0])), pos_emb.shape[1])
        )

        (patch_num_0, patch_num_1) = patch_num

        if pos_emb.shape[0] != patch_num_0 or pos_emb.shape[1] != patch_num_1:
            # Dervied from https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
            # antialias: default True in jax.image.resize
            pos_emb = pos_emb.unsqueeze(0).permute(0, 3, 1, 2)
            pos_emb = F.interpolate(
                pos_emb,
                size=(patch_num_0, patch_num_1),
                mode="bicubic",
                align_corners=False,
                antialias=True,
            )
            pos_emb = pos_emb.permute(0, 2, 3, 1).squeeze(0)

        pos_emb = pos_emb.reshape(-1, pos_emb.shape[-1])
        x = x + torch.cat([cls_emb[None, :, :], pos_emb[None, :, :]], dim=1).to(x.dtype)
        return x

    def forward(self, x: torch.Tensor, patch_num: int = None) -> List[torch.Tensor]:
        """
        : param x: (batch_size, num_patch, n_pixels)
        """
        if patch_num is None:
            patch_num = self.config.vision_backbone.image_num_patch
        B, N, D = x.shape

        x = self.patch_embedding(x)

        # class embeddings and positional embeddings
        x = torch.cat([_expand_token(self.class_embedding, x.shape[0]).to(x.dtype), x], dim=1)
        x = self.add_pos_emb(x, patch_num)

        x = self.pre_ln(x)

        hidden_states = self.transformer(x)
        return hidden_states


class MolmoVisionBackbone(nn.Module):
    def __init__(self, config: VisionBackboneConfig):
        super().__init__()
        self.config = config
        input_dim: int = None
        self.image_pooling_2d: nn.Module = None
        if config.image_pooling_2d in {ImagePooling2DType.attention, ImagePooling2DType.attention_meanq}:
            self.image_pooling_2d = MultiHeadDotProductAttention(config, is_vit_layer=False)
            input_dim = config.vision_backbone.image_emb_dim
        elif config.image_pooling_2d == ImagePooling2DType.attention_2wide:
            cfg = deepcopy(config)
            cfg.vision_backbone.image_emb_dim *= 2
            cfg.vision_backbone.image_head_dim *= 2
            self.image_pooling_2d = MultiHeadDotProductAttention(cfg, is_vit_layer=False)
            input_dim = cfg.vision_backbone.image_emb_dim
        elif config.image_pooling_2d == ImagePooling2DType.attention_v2:
            assert config.vit_layers is not None
            use_bias = True
            dropout = True
            output_layer = True
            query = "mean"
            mean_residual = False
            factor = len(config.vit_layers)
            self.image_pooling_2d = MultiHeadAttentionPool(
                config,
                factor=factor,
                use_bias=use_bias,
                dropout=dropout,
                output_layer=output_layer,
                mean_residual=mean_residual,
                query=query,
                is_vit_layer=False,
            )
            input_dim = config.vision_backbone.image_emb_dim * factor
        elif config.image_pooling_2d in [ImagePooling2DType.none, ImagePooling2DType.stack]:
            self.image_pooling_2d = None
            nlayers = 1 if config.vit_layers is None else len(config.vit_layers)
            input_dim = nlayers * config.vision_backbone.image_emb_dim
        else:
            raise NotImplementedError(f"Unknown image pooling 2D method: {config.image_pooling_2d}")

        self.input_dim = input_dim

        self.image_projector = MLP(config, input_dim)

        self.image_feature_dropout = Dropout(config.image_feature_dropout)

    @classmethod
    def build(cls, config: MolmoConfig) -> MolmoVisionBackbone:
        v_cfg = config.vision_backbone
        assert v_cfg is not None
        return MolmoPretrainedVisionBackbone(config)

    def reset_parameters(self):
        if self.image_pooling_2d is not None:
            self.image_pooling_2d.reset_parameters()
        if self.config.image_projector == "2mlp":
            for module in self.image_projector:
                module.reset_parameters()
        elif self.config.image_projector == "linear":
            nn.init.xavier_uniform_(self.image_projector.weight)
        else:
            self.image_projector.reset_parameters()

    @abstractmethod
    def forward(
        self, images: torch.Tensor, image_masks: torch.Tensor
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        raise NotImplementedError


class MolmoPretrainedVisionBackbone(MolmoVisionBackbone):
    def __init__(self, config: MolmoConfig):
        super().__init__(config)
        v_cfg = self.config.vision_backbone

        if v_cfg.image_model_type == VisionBackboneType.openai:
            self.image_vit = VisionTransformer(config)
        else:
            raise NotImplementedError(f"Unknown image model type: {v_cfg.image_model_type}")

        self.num_prefix_tokens = self.image_vit.num_prefix_tokens
        assert self.num_prefix_tokens in {0, 1}, "Only 0 or 1 prefix tokens are supported"
        if config.use_cls_feature:
            assert self.num_prefix_tokens > 0, "The model does not have a CLS token"
            nlayers = 1 if config.vit_layers is None else len(config.vit_layers)
            self.cls_projector = nn.Linear(
                nlayers * v_cfg.image_emb_dim,
                self.input_dim,
                bias=False,
                device=config.init_device,
            )

        self.pad_embed = None
        if config.image_padding_embed:
            image_dim = v_cfg.image_emb_dim * len(self.config.vit_layers)
            if config.image_padding_embed in ["pad_embed", "regress"]:
                self.pad_embed = nn.Parameter(torch.zeros((image_dim,), device=config.init_device))
            elif config.image_padding_embed == "pad_and_partial_pad":
                self.pad_embed = nn.Parameter(torch.zeros((2, image_dim), device=config.init_device))
            else:
                raise ValueError(config.image_padding_embed)

    def reset_with_pretrained_weights(self):
        super().reset_parameters()  # resets the connector
        if self.config.vit_load_path:
            vit_load_path = Path(self.config.vit_load_path)
            state_dict_path = resource_path(
                vit_load_path.parent,
                vit_load_path.name,
                local_cache=vit_load_path.parent,
            )
            assert state_dict_path.is_file(), f"Model file {str(state_dict_path)} not found"
            state_dict = torch.load(state_dict_path, map_location="cpu")
            self.image_vit.load_state_dict(state_dict)
        else:
            self.image_vit.reset_parameters()
        if self.config.use_cls_feature:
            nn.init.xavier_uniform_(self.cls_projector.weight)
        if self.pad_embed is not None:
            nn.init.zeros_(self.pad_embed)

    def reset_parameters(self):
        super().reset_parameters()
        self.image_vit.reset_parameters()
        if self.config.use_cls_feature:
            nn.init.xavier_uniform_(self.cls_projector.weight)

    def encode_image(self, images: torch.Tensor) -> torch.Tensor:
        """
        : param images: (batch_size, num_crops, num_patch, n_pixels)
        """
        cfg = self.config
        v_cfg = self.config.vision_backbone
        B, T, N, D = images.shape

        mask = torch.logical_not(torch.all(images.view(B * T, N, D) == -1, dim=(1, 2), keepdim=True))

        # Output all hidden states
        # n_layers x (batch_num_crops, (1+)n_tokens, image_emb_dim)
        images = images.view(B * T, N, D)
        image_features = self.image_vit(images)

        if cfg.vit_layers is not None:
            features = []
            for layer in cfg.vit_layers:
                features.append(image_features[layer])
            image_features = torch.cat(features, dim=-1)
        else:
            image_features = image_features[-1]

        cls_embed: torch.Tensor = None
        if self.num_prefix_tokens > 0:
            cls_embed = image_features[:, 0]
            image_features = image_features[:, 1:]

        image_features = image_features * mask
        image_features = image_features.view(B, T, N, -1)

        cls_embed = cls_embed.view(B, T, -1) if cls_embed is not None else None

        return image_features, cls_embed

    def forward(
        self, images: torch.Tensor, image_masks: torch.Tensor
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        cfg = self.config

        # image_features: (batch_size, num_crops(=num_image), num_patch, nximage_emb_dim)
        batch_size, num_image = images.shape[:2]
        image_features, cls_embed = self.encode_image(images)

        og_dtype = image_features.dtype
        if cfg.image_padding_embed:
            assert image_masks is not None
            if cfg.image_padding_embed == "pad_embed":
                all_pad = (image_masks == 0).to(dtype=torch.float32)
                pad_embed = self.pad_embed[None, None, None, :]
                image_features = image_features + pad_embed * torch.unsqueeze(all_pad, -1)
            elif cfg.image_padding_embed == "regress":
                pad_embed = self.pad_embed[None, None, None, :]
                image_features = image_features + pad_embed * torch.unsqueeze(
                    torch.maximum(image_masks, torch.zeros_like(image_masks)), -1
                )
            elif cfg.image_padding_embed == "pad_and_partial_pad":
                og_dtype = image_features.dtype
                pad_embed = self.pad_embed[:, None, None, None, :]
                all_pad = image_masks == 0
                partial_pad = torch.logical_and(image_masks < 1, torch.logical_not(all_pad)).to(
                    dtype=torch.float32
                )
                all_pad = all_pad.to(dtype=torch.float32)
                image_features = image_features + pad_embed[0] * torch.unsqueeze(all_pad, -1)
                image_features = image_features + pad_embed[1] * torch.unsqueeze(partial_pad, -1)
            else:
                raise ValueError(cfg.image_padding_embed)

        image_features = image_features.to(og_dtype)
        image_features = self.image_feature_dropout(image_features)
        if cls_embed is not None:
            cls_embed = self.image_feature_dropout(cls_embed)

        image_features = image_features.reshape(
            (batch_size, num_image) + cfg.vision_backbone.image_num_patch + (-1,),
        )

        if cfg.vision_backbone.image_num_patch[0] % cfg.image_pooling_h == 1:
            # Pad so we can still pool 2x2 patches
            image_features = F.pad(
                image_features,
                (0, 0, 0, 1, 0, 1, 0, 0, 0, 0),
            )

        # image pooling
        image_features = einops.rearrange(
            image_features,
            "b n (h dh) (w dw) c -> (b n h w) (dh dw) c",
            dh=cfg.image_pooling_h,
            dw=cfg.image_pooling_w,
        )

        if cfg.image_pooling_2d == ImagePooling2DType.attention_meanq:
            query = image_features.mean(-2, keepdim=True)
            image_features = self.image_pooling_2d(query, image_features)
        elif cfg.image_pooling_2d == ImagePooling2DType.attention_v2:
            image_features = self.image_pooling_2d(image_features)
        elif cfg.image_pooling_2d not in {ImagePooling2DType.none, ImagePooling2DType.stack}:
            image_features = self.image_pooling_2d(image_features[:, :1, :], image_features)

        h, w = cfg.llm_patches_per_crop
        image_features = image_features.reshape(batch_size, num_image, h * w, -1)

        # MLP layer to map the feature.
        if cfg.image_projector == ImageProjectType.mlpx2:
            for module in self.image_projector:
                image_features = module(image_features)
        else:
            image_features = self.image_projector(image_features)

        if self.config.use_cls_feature:
            cls_embed = self.cls_projector(cls_embed)
            if cfg.image_projector == ImageProjectType.mlpx2:
                for module in self.image_projector:
                    cls_embed = module(cls_embed)
            else:
                cls_embed = self.image_projector(cls_embed)

        # image_features: (batch_size, num_image, num_patch, d_model)
        # cls_embed: (batch_size, num_image, d_model)
        return image_features, cls_embed


class MolmoPretrainedModel(PreTrainedModel):
    config_class = MolmoConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["MolmoDecoderLayer"]
    _skip_keys_device_placement = ["past_key_values"]
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_cache_class = True
    _supports_quantized_cache = True
    _supports_static_cache = True

    def _init_weights(self, module):
        if self.vision_backbone is not None:
            self.vision_backbone.reset_parameters()
        self.reset_non_vision_parameters()


class MolmoModel(MolmoPretrainedModel):
    def __init__(self, config: MolmoConfig, init_params: bool = True):
        super().__init__(config)
        self.config = config
        self.__cache = BufferCache()

        # Validate config.
        if self.config.embedding_size is not None and self.config.embedding_size != self.config.vocab_size:
            if self.config.embedding_size < self.config.vocab_size:
                raise MolmoConfigurationError("embedding size should be at least as big as vocab size")
            elif self.config.embedding_size % 128 != 0:
                import warnings

                warnings.warn(
                    "Embedding size is not a multiple of 128! This could hurt throughput performance.", UserWarning
                )

        if not (
            0 < self.config.block_group_size <= self.config.n_layers
            and self.config.n_layers % self.config.block_group_size == 0
        ):
            raise MolmoConfigurationError("n layers must be divisible by block group size")

        torch.backends.cuda.enable_flash_sdp(True)
        torch.backends.cuda.enable_mem_efficient_sdp(False)  # this is super slow so make sure torch won't use it

        wte = None
        if self.config.additional_vocab_size is not None:
            wte = Embedding(
                config.embedding_size or config.vocab_size,
                config.additional_vocab_size,
                config.d_model,
                device=config.init_device,
                initializer_range=config.initializer_range,
                new_embed_initializer_range=config.new_embedding_init_range,
            )
        else:
            wte = nn.Embedding(
                config.embedding_size or config.vocab_size, config.d_model, device=config.init_device
            )

        self.transformer = nn.ModuleDict(
            dict(
                wte=wte,
                emb_drop=Dropout(config.embedding_dropout),
                ln_f=RMSLayerNorm(config, size=config.d_model, eps=config.layer_norm_eps),
            )
        )

        layers = [MolmoDecoderLayer(i, config, self.__cache) for i in range(config.n_layers)]
        self.transformer.update({"layers": nn.ModuleList(layers)})

        self.vision_backbone: Optional[MolmoVisionBackbone] = None
        if config.vision_backbone is not None:
            self.vision_backbone = MolmoVisionBackbone.build(config)

        if self.vision_backbone is not None:
            self.vision_backbone.reset_with_pretrained_weights()

    @property
    def device(self) -> torch.device:
        device: torch.device = self.transformer.wte.weight.device  # type: ignore
        if device.type == "meta":
            return _non_meta_init_device(self.config)
        else:
            return device

    def forward(
        self,
        input_ids: torch.LongTensor,
        input_embeddings: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        attention_bias: Optional[torch.Tensor] = None,
        response_mask: Optional[torch.Tensor] = None,
        images: Optional[torch.Tensor] = None,
        image_masks: Optional[torch.Tensor] = None,
        image_input_idx: Optional[torch.Tensor] = None,
        subsegment_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        past_key_values: Optional[Sequence[Tuple[torch.Tensor, torch.Tensor]]] = None,
        use_cache: bool = False,
        last_logits_only: bool = False,
        output_hidden_states: Optional[bool] = None,
        append_last_valid_logits: Optional[torch.Tensor] = None,
    ) -> MolmoOutput:
        """
        :param input_ids: A tensor of shape `(batch_size, seq_len)`.
        :param input_embeddings: A tensor of shape `(batch_size, seq_len, d_model)` with input
            embeddings. When provided, it is treated as the output of the input embedding layer.
        :param attention_mask: A tensor of shape `(batch_size, seq_len)` that indicates
            which input IDs are masked. A `1` value in the mask means that
            the corresponding input ID should *not* be ignored. A `0` means
            that the corresponding input ID is masked.

            This has the same meaning as the `attention_mask` in HuggingFace's `transformers`
            library.
        :param attention_bias: A tensor of shape `(batch_size, 1, seq_len, seq_len)`,
            `(1, 1, seq_len, seq_len)`, or `(seq_len, seq_len)`. This is used
            to introduce causal or other biases.

            If the tensor is a bool or byte tensor, a `True` or `1` at `attention_bias[:, :, i, j]`
            indicates that the i-th element in the sequence is allowed to attend to the j-th
            element in the sequence.

            If the tensor is a float tensor, it will just be added to the attention
            scores before the softmax.

            The default is causal, which corresponds to a lower-diagonal byte matrix of ones.
        :param response_mask: A tensor of shape `(batch_size, seq_len)` that indicates
            the response mask. A `1` value in the mask means that the corresponding token
            is a response token. A `0` means that the corresponding token is not
            a response token.
        :param past_key_values: Pre-computed keys and values for each attention block.
            Can be used to speed up sequential decoding. The `input_ids` which have
            their past given to this model should not be passed as `input_ids` as they have already been computed.
        :param use_cache: If `True`, return key and value tensors for each block.
        :param last_logits_only: If `True`, only compute the logits for the last token of each sequence.
            This can speed up decoding when you only care about the next token.
        """
        output_hidden_states = output_hidden_states if output_hidden_states is not None else False

        if past_key_values:
            assert len(past_key_values) == self.config.n_layers

        has_image = images is not None

        assert not (has_image and input_embeddings is not None), "Cannot provide both images and input embeddings."
        assert not (
            has_image and past_key_values is not None
        ), "Cached key and values should not be used with images."

        batch_size, seq_len = input_ids.size() if input_embeddings is None else input_embeddings.size()[:2]
        if past_key_values is None:
            past_length = 0
        else:
            past_length = past_key_values[0][0].size(-2)

        if self.config.unconditioned and input_embeddings is None:
            images = None
            image_input_idx = None

        if self.config.use_position_ids and attention_mask is None:
            attention_mask = input_ids != -1

        if subsegment_ids is not None:
            assert not use_cache, "Subsegment_ids cannot be used with cache."
            subsegment_mask = subsegment_ids.unsqueeze(2) <= subsegment_ids.unsqueeze(1)
            attention_mask = (
                subsegment_mask.to(attention_mask.dtype)
                * attention_mask.unsqueeze(2)
                * attention_mask.unsqueeze(1)
            )
            if position_ids is None:
                raise ValueError("Positioned ids must be given if using subsegment_ids")
        else:
            if self.config.use_position_ids and position_ids is None:
                position_ids = torch.clamp(
                    torch.cumsum(attention_mask.to(torch.int32), dim=-1) - 1,
                    min=0,
                ).broadcast_to((batch_size, attention_mask.shape[-1]))

        # Get embeddings of input.
        # shape: (batch_size, seq_len, d_model)
        if input_ids is not None:
            input_ids = input_ids * (input_ids != -1).to(input_ids.dtype)
        x = self.transformer.wte(input_ids) if input_embeddings is None else input_embeddings  # type: ignore

        num_image: Optional[int] = None
        if images is not None:
            # shape: (batch_size, num_image, num_patch, d_model)
            # cls_embed: (batch_size, num_image, d_model)
            image_features, cls_embed = self.vision_backbone(images, image_masks)
            num_image, num_patch = image_features.shape[1:3]
            assert image_input_idx.shape == (batch_size, num_image, num_patch)

            # inster the image feature into the embedding.
            image_features = image_features.view(batch_size, num_image * num_patch, -1)
            image_input_idx = image_input_idx.view(batch_size, num_image * num_patch)

            valid = image_input_idx >= 0
            batch_idx = torch.arange(batch_size, device=x.device)
            batch_idx = torch.tile(batch_idx[:, None], [1, image_features.shape[1]])

            # For hf demo/endpoint
            image_features = image_features.to(x.device)

            x[batch_idx[valid], image_input_idx[valid]] += image_features[valid]

            if self.config.use_cls_feature:
                x = torch.cat([x[:, :1], cls_embed, x[:, 1:-num_image]], dim=1)

                valid_images = torch.any((image_input_idx >= 0).view(batch_size, num_image, num_patch), dim=-1)
                valid_images = valid_images.to(attention_mask.dtype)
                attention_mask = torch.cat(
                    [attention_mask[:, :1], valid_images, attention_mask[:, 1:-num_image]],
                    dim=1,
                )
                position_ids = torch.clamp(
                    torch.cumsum(attention_mask, dim=-1) - 1,
                    min=0,
                ).broadcast_to((batch_size, attention_mask.shape[-1]))

        # Add input + positional embeddings and apply dropout.
        # shape: (batch_size, seq_len, d_model)
        x = self.transformer.emb_drop(x)  # type: ignore

        # normalized
        if self.config.normalize_input_embeds:
            x = x * (self.config.d_model**0.5)

        # Transform the attention mask into what the blocks expect.
        if attention_mask is not None:
            # shape: (batch_size, 1, 1, seq_len)
            if len(attention_mask.shape) == 2:
                attention_mask = attention_mask[:, : past_length + seq_len]
                attention_mask = attention_mask.to(dtype=torch.float).view(batch_size, -1)[:, None, None, :]
            else:
                attention_mask = attention_mask.unsqueeze(1).to(dtype=torch.float)
            attention_mask = (1.0 - attention_mask) * torch.finfo(attention_mask.dtype).min

        # Merge attention mask with attention bias.
        if (
            attention_bias is not None
            or attention_mask is not None
            # NOTE (epwalsh): we need to initialize the attn bias in order for attn to work properly
            # with key+value cache. Otherwise `F.scaled_dot_product_attention()` doesn't seem to compute
            # scores correctly.
            or past_key_values is not None
        ):
            if attention_bias is None:
                attention_bias = get_causal_attention_bias(self.__cache, past_length + seq_len, x.device)
            elif attention_bias.dtype in (torch.int8, torch.bool):
                attention_bias = attention_bias.to(dtype=torch.float)
                attention_bias.masked_fill_(attention_bias == 0.0, torch.finfo(attention_bias.dtype).min)

            # Transform to the right shape and data type.
            mask_len = seq_len
            if attention_mask is not None:
                mask_len = attention_mask.shape[-1]
            elif past_key_values is not None:
                mask_len = past_key_values[0][0].shape[-2] + seq_len
            attention_bias = attention_bias[:, :, :mask_len, :mask_len].to(dtype=torch.float)

            # Add in the masking bias.
            if attention_mask is not None:
                attention_bias = attention_bias + attention_mask
                # Might get -infs after adding attention mask, since dtype.min + dtype.min = -inf.
                # `F.scaled_dot_product_attention()` doesn't handle -inf like you'd expect, instead
                # it can produce NaNs.
                ensure_finite_(attention_bias, check_neg_inf=True, check_pos_inf=False)

        attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = [] if use_cache else None

        # decoder layers
        all_hidden_states = []

        # Apply blocks one-by-one.
        for block_idx, layer in enumerate(self.transformer.layers):
            if output_hidden_states:
                # add hidden states
                all_hidden_states.append(x)

            layer_past = None if past_key_values is None else past_key_values[block_idx]
            # shape: (batch_size, seq_len, d_model)
            x, cache = layer(
                x,
                attention_bias=attention_bias,
                position_ids=position_ids,
                drop_mask=response_mask,
                layer_past=layer_past,
                use_cache=use_cache,
            )

            if attn_key_values is not None:
                assert cache is not None
                attn_key_values.append(cache)

        if images is not None and self.config.use_cls_feature:
            assert num_image is not None
            x = torch.cat(
                [x[:, :1], x[:, num_image + 1 :], torch.zeros_like(x[:, :num_image])],
                dim=1,
            )

        if last_logits_only:
            # shape: (batch_size, 1, d_model)
            if append_last_valid_logits is not None:
                last_valid_output = x[
                    torch.arange(x.shape[0], device=x.device), append_last_valid_logits.to(x.device)
                ]
                x = last_valid_output.unsqueeze(1)
            else:
                x = x[:, -1, :].unsqueeze(1)

        # Apply final layer norm.
        # shape: (batch_size, seq_len or 1, d_model)
        x = self.transformer.ln_f(x)  # type: ignore
        if output_hidden_states:
            # add final hidden state post-final-layernorm, following HuggingFace's convention
            all_hidden_states.append(x)

        # Get logits.
        # shape: (batch_size, seq_len or 1, vocab_size)
        return MolmoOutput(
            last_hidden_states=x,
            attn_key_values=attn_key_values,
            hidden_states=tuple(all_hidden_states) if output_hidden_states else None,
        )


class MolmoForCausalLM(PreTrainedModel):
    """
    Extremely barebones HF model wrapper.
    """

    config_class = MolmoConfig
    base_model_prefix = "model"
    _no_split_modules = ["MolmoDecoderLayer"]

    def __init__(self, config: MolmoConfig):
        super().__init__(config)
        # model_config = create_model_config_from_pretrained_config(config)
        # Initialize model (always on CPU to start with so we don't run out of GPU memory).
        config.init_device = "cpu"
        v_cfg = config.vision_backbone
        if v_cfg is not None:
            v_cfg = VisionBackboneConfig(**v_cfg)
            config.vision_backbone = v_cfg
        self.model = MolmoModel(config)

        if not config.weight_tying:
            self.lm_head = nn.Linear(
                config.d_model,
                config.embedding_size or config.vocab_size,
                bias=config.include_bias,
                device=config.init_device,
            )

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        attention_bias: Optional[torch.Tensor] = None,
        response_mask: Optional[torch.Tensor] = None,
        images: Optional[torch.Tensor] = None,
        image_masks: Optional[torch.Tensor] = None,
        image_input_idx: Optional[torch.Tensor] = None,
        subsegment_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        labels: Optional[torch.LongTensor] = None,
        loss_masks: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = None,
        last_logits_only: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        append_last_valid_logits: Optional[torch.Tensor] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[
            torch.Tensor
        ] = None,  # This is a hack mitigation of an issue in transformers `4.39.x` https://github.com/huggingface/transformers/issues/29426
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        if use_cache is None:
            use_cache = self.config.use_cache

        if output_attentions:
            raise ValueError("output_attentions is not yet supported in Molmo")

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            input_embeddings=inputs_embeds,
            attention_mask=attention_mask,
            attention_bias=attention_bias,
            response_mask=response_mask,
            images=images,
            image_masks=image_masks,
            image_input_idx=image_input_idx,
            subsegment_ids=subsegment_ids,
            position_ids=position_ids,
            past_key_values=past_key_values,
            use_cache=use_cache,
            last_logits_only=last_logits_only,
            output_hidden_states=output_hidden_states,
            append_last_valid_logits=append_last_valid_logits,
        )

        x = outputs.last_hidden_states
        if self.config.weight_tying:
            logits = F.linear(x, self.model.transformer.wte.weight, None)  # type: ignore
        else:
            logits = self.lm_head(x)  # type: ignore

        if self.config.scale_logits:
            logits.mul_(1 / math.sqrt(self.config.d_model))

        if self.config.final_logit_softcapping is not None:
            logits = logits / self.config.final_logit_softcapping
            logits = torch.tanh(logits)
            logits = logits * self.config.final_logit_softcapping

        if not last_logits_only and append_last_valid_logits is not None:
            last_valid_logit = logits[
                torch.arange(logits.shape[0], device=logits.device), append_last_valid_logits
            ]
            logits = torch.cat([logits[:, :-1], last_valid_logit[:, None]], dim=1)

        loss = None
        if labels is not None:
            if loss_masks is not None:
                loss_masks = loss_masks * (loss_masks > 0)
                batch_size_in_tokens = max(loss_masks.sum().item(), 1)
                labels = labels.long()
                labels.masked_fill_(~(loss_masks > 0), -100)
                labels = labels.view(-1)
                logits_for_loss = logits.to(torch.float32).view(-1, logits.size(-1))
                loss_fct = torch.nn.CrossEntropyLoss(ignore_index=-100, reduction="none")
                loss = loss_fct(logits_for_loss, labels)
                loss = loss.view(input_ids.shape[0], -1)
                loss = loss * loss_masks
                loss = loss.sum() / batch_size_in_tokens
                use_zloss = getattr(self.config, "softmax_auxiliary_loss", False)
                if use_zloss:
                    z_squared = logits_for_loss.logsumexp(-1).pow(2)
                    z_loss = self.config.softmax_auxiliary_loss_scale * z_squared
                    z_loss = z_loss.view(input_ids.shape[0], -1)
                    z_loss = z_loss * loss_masks
                    z_loss = z_loss.sum() / batch_size_in_tokens
                    loss += z_loss
            else:
                # Shift so that tokens < n predict n
                shift_logits = logits[..., :-1, :].contiguous()
                shift_labels = labels[..., 1:].contiguous()
                # Flatten the tokens
                loss_fct = torch.nn.CrossEntropyLoss()
                shift_logits = shift_logits.view(-1, self.config.embedding_size)
                shift_labels = shift_labels.view(-1)
                # Enable model parallelism
                shift_labels = shift_labels.to(shift_logits.device)
                loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.attn_key_values,
            hidden_states=outputs.hidden_states,
        )

    def can_generate(self) -> bool:
        return True

    @torch.no_grad()
    def generate(
        self,
        input_ids,
        images=None,
        attention_mask=None,
        image_masks=None,
        image_input_idx=None,
        generation_config=None,
        **kwargs,
    ):
        if generation_config is not None:
            assert generation_config.use_cache

        # Validate inputs.
        batch_size, seq_len = input_ids.shape
        max_new_tokens = generation_config.max_new_tokens
        assert max_new_tokens is not None
        mask_len = seq_len + max_new_tokens if self.config.use_position_ids else seq_len
        position_ids: Optional[torch.Tensor] = None
        append_last_valid_logits: Optional[torch.Tensor] = None
        if self.config.use_position_ids and attention_mask is None:
            attention_mask = input_ids != -1
            position_ids = torch.clamp(torch.cumsum(attention_mask.to(torch.int32), dim=-1) - 1, min=0)
            append_last_valid_logits = attention_mask.long().sum(dim=-1) - 1
            attention_mask = torch.cat(
                [attention_mask, attention_mask.new_ones((batch_size, max_new_tokens))],
                dim=1,
            )
        if attention_mask is not None:
            assert attention_mask.shape == (batch_size, mask_len)

        out = super().generate(
            input_ids,
            generation_config,
            attention_mask=attention_mask,
            images=images,
            image_masks=image_masks,
            image_input_idx=image_input_idx,
            position_ids=position_ids,
            append_last_valid_logits=append_last_valid_logits,
            **kwargs,
        )

        return out

    def prepare_inputs_for_generation(
        self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple]] = None, **kwargs
    ):
        if past_key_values:
            # This is because we want the model to only process the last generated token.
            input_ids = input_ids[:, -1:]

        if self.config.use_position_ids:
            attention_mask = kwargs.get("attention_mask")
            images = kwargs.get("images")
            image_masks = kwargs.get("image_masks")
            image_input_idx = kwargs.get("image_input_idx")
            position_ids = kwargs.get("position_ids")
            append_last_valid_logits = kwargs.get("append_last_valid_logits")
            model_inputs = {
                "input_ids": input_ids,
                "attention_mask": attention_mask,
                "position_ids": position_ids,
                "past_key_values": past_key_values,
                "use_cache": True,
                "last_logits_only": True,
            }
            if past_key_values is None:
                model_inputs["images"] = images
                model_inputs["image_masks"] = image_masks
                model_inputs["image_input_idx"] = image_input_idx
                model_inputs["append_last_valid_logits"] = append_last_valid_logits
        else:
            model_inputs = {"input_ids": input_ids, "past_key_values": past_key_values}

            model_inputs.update(kwargs)
            model_inputs["use_cache"] = kwargs.pop("use_cache", self.config.use_cache)
        return model_inputs

    def _update_model_kwargs_for_generation(
        self,
        outputs: ModelOutput,
        model_kwargs: Dict[str, Any],
        is_encoder_decoder: bool = False,
        num_new_tokens: int = 1,
    ) -> Dict[str, Any]:
        if self.config.use_position_ids:
            model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
            if "append_last_valid_logits" in model_kwargs:
                del model_kwargs["append_last_valid_logits"]
            if "images" in model_kwargs:
                del model_kwargs["images"]
                del model_kwargs["image_masks"]
                del model_kwargs["image_input_idx"]
        cache_name, cache = super()._extract_past_from_model_output(outputs)
        model_kwargs[cache_name] = cache
        model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + num_new_tokens
        return model_kwargs

    # TODO: these are required to make the implementation complete.
    # def resize_position_embeddings(self, new_num_position_embeddings: int):
    #     pass
    #
    # def get_position_embeddings(self) -> Union[nn.Embedding, Tuple[nn.Embedding]]:
    #     pass
    #
    # def _reorder_cache(self, past_key_values, beam_idx):
    #     pass

    def get_input_embeddings(self) -> torch.nn.Module:
        return self.model.transformer.wte

    def set_input_embeddings(self, value: torch.nn.Module):
        self.model.transformer.wte = value

    def get_output_embeddings(self):
        if self.config.weight_tying:
            return self.model.transformer.wte
        else:
            return self.lm_head

    def set_output_embeddings(self, value: torch.nn.Module):
        if self.config.weight_tying:
            self.model.transformer.wte = value
        else:
            self.lm_head = value

    def tie_weights(self):
        """
        This function is intentionally left as a no-op.

        Weight tying is handled as follows:
        - When the model is initialized, the `lm_head` layer is conditionally defined based on the `weight_tying` configuration.
        See: `if not config.weight_tying: self.transformer.update(...)` in `olmo/model.py`.
        - When computing logits, the `wte` weights are used directly if `weight_tying` is enabled.
        See: `if self.config.weight_tying: logits = F.linear(x, self.transformer.wte.weight, None)` in the `forward` method.

        Therefore, there is no need to explicitly tie the weights in this function.
        """
        pass

    def resize_token_embeddings(
        self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
    ) -> torch.nn.Embedding:
        """
        Resizes input token embeddings matrix of the model if `new_num_tokens != config.embedding_size`.

        Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.

        Arguments:
            new_num_tokens (`int`, *optional*):
                The new number of tokens in the embedding matrix. Increasing the size will add newly initialized
                vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
                returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything.
            pad_to_multiple_of (`int`, *optional*):
                If set will pad the embedding matrix to a multiple of the provided value. If `new_num_tokens` is set to
                `None` will just pad the embedding to a multiple of `pad_to_multiple_of`.

                This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
                `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
                details about this, or help on choosing the correct value for resizing, refer to this guide:
                https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc

        Return:
            `torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.

        Note:
            This method differs from the base class implementation by resizing the `embedding_size` attribute of the
            model configuration instead of the `vocab_size`. It also includes a warning if the resized `embedding_size`
            is less than the `vocab_size`. In Molmo, `embedding_size` refers to the dimensionality of the model's token
            embeddings, while `vocab_size` refers to the number of unique tokens in the vocabulary.
        """
        model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
        if new_num_tokens is None and pad_to_multiple_of is None:
            return model_embeds

        # Update base model and current model config
        self.config.embedding_size = model_embeds.weight.shape[0]
        self.model.config.embedding_size = model_embeds.weight.shape[0]

        # Check if the embedding size is less than the vocab size
        if self.config.embedding_size < self.config.vocab_size:
            warning_message = (
                f"Resizing token embeddings to size {self.config.embedding_size}, which is less than the vocab size "
                f"{self.config.vocab_size} defined in the model configuration. Make sure your tokenizer's vocabulary "
                "size is less than or equal to the new token embedding size."
            )
            log.warning(warning_message)

        # Tie weights again if needed
        self.tie_weights()

        return model_embeds