File size: 8,316 Bytes
35203c7 2d96dbe 463fea2 2d96dbe 9556d9b 35203c7 f3251a7 35203c7 2d96dbe 35203c7 97ade0f 2d96dbe 9556d9b 35203c7 2d96dbe 35203c7 3b91b26 2d96dbe c6c4e7b 35203c7 2d96dbe 35203c7 2d96dbe 463fea2 35203c7 2d96dbe 35203c7 2d96dbe 047472f 2d96dbe 35203c7 2d96dbe 35203c7 2d96dbe 35203c7 2d96dbe 35203c7 2d96dbe 35203c7 2d96dbe 35203c7 2d96dbe 35203c7 2d96dbe 35203c7 2d96dbe 35203c7 2d96dbe 35203c7 9556d9b 2d96dbe 35203c7 2d96dbe 35203c7 4c18ce8 56196f1 4c18ce8 56196f1 4c18ce8 56196f1 4c18ce8 56196f1 4c18ce8 35203c7 463fea2 35203c7 2d96dbe 35203c7 2d96dbe 35203c7 9556d9b 2d96dbe 35203c7 2d96dbe 047472f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
---
license: apache-2.0
language:
- en
pipeline_tag: text-generation
base_model:
- allenai/OLMo-2-13B-1124
library_name: transformers
datasets:
- allenai/tulu-3-sft-olmo-2-mixture
---
<img alt="OLMo Logo" src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/olmo2/olmo.png" width="242px">
# OLMo-2-1124-13B-SFT
OLMo 2 13B SFT November 2024 is post-trained variant of the [OLMo 2 13B November 2024](https://huggingface.co/allenai/OLMo2-13B-1124) model, which has undergone supervised finetuning on an OLMo-specific variant of the [Tülu 3 dataset](allenai/tulu-3-sft-olmo-2-mixture).
Tülu 3 is designed for state-of-the-art performance on a diversity of tasks in addition to chat, such as MATH, GSM8K, and IFEval.
Check out the OLMo 2 paper (forthcoming) or [Tülu 3 paper](https://arxiv.org/abs/2411.15124) for more details!
OLMo is a series of **O**pen **L**anguage **Mo**dels designed to enable the science of language models.
These models are trained on the Dolma dataset. We are releasing all code, checkpoints, logs (coming soon), and associated training details.
The core models released in this batch include the following:
| **Stage** | **OLMo 2 7B** | **OLMo 2 13B** |
|----------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| **Base Model** | [allenai/OLMo2-7B-1124](https://huggingface.co/allenai/OLMo2-7B-1124) | [allenai/OLMo-2-13B-1124](https://huggingface.co/allenai/OLMo-2-13B-1124) |
| **SFT** | [allenai/OLMo-2-1124-7B-SFT](https://huggingface.co/allenai/OLMo-2-1124-7B-SFT) | [allenai/OLMo-2-1124-13B-SFT](https://huggingface.co/allenai/OLMo-2-1124-13B-SFT) |
| **DPO** | [allenai/OLMo-2-1124-7B-DPO](https://huggingface.co/allenai/OLMo-2-1124-7B-DPO) | [allenai/OLMo-2-1124-13B-DPO](https://huggingface.co/allenai/OLMo-2-1124-13B-DPO) |
| **Final Models (RLVR)** | [allenai/OLMo-2-1124-7B-Instruct](https://huggingface.co/allenai/OLMo-2-1124-7B-Instruct) | [allenai/OLMo-2-1124-13B-Instruct](https://huggingface.co/allenai/OLMo-2-1124-13B-Instruct) |
| **Reward Model (RM)**| [allenai/OLMo-2-1124-7B-RM](https://huggingface.co/allenai/OLMo-2-1124-7B-RM) | (Same as 7B) |
## Model description
- **Model type:** A model trained on a mix of publicly available, synthetic and human-created datasets.
- **Language(s) (NLP):** Primarily English
- **License:** Apache 2.0
- **Finetuned from model:** allenai/OLMo-2-13B-1124
### Model Sources
- **Project Page:** https://allenai.org/olmo
- **Repositories:**
- Core repo (training, inference, fine-tuning etc.): https://github.com/allenai/OLMo
- Evaluation code: https://github.com/allenai/olmes
- Further fine-tuning code: https://github.com/allenai/open-instruct
- **Paper:** https://arxiv.org/abs/2501.00656
- **Demo:** https://playground.allenai.org/
## Using the model
### Loading with HuggingFace
To load the model with HuggingFace, use the following snippet:
```
from transformers import AutoModelForCausalLM
olmo_model = AutoModelForCausalLM.from_pretrained("allenai/OLMo-2-1124-13B-SFT")
```
### Chat template
The chat template for our models is formatted as:
```
<|endoftext|><|user|>\nHow are you doing?\n<|assistant|>\nI'm just a computer program, so I don't have feelings, but I'm functioning as expected. How can I assist you today?<|endoftext|>
```
Or with new lines expanded:
```
<|endoftext|><|user|>
How are you doing?
<|assistant|>
I'm just a computer program, so I don't have feelings, but I'm functioning as expected. How can I assist you today?<|endoftext|>
```
It is embedded within the tokenizer as well, for `tokenizer.apply_chat_template`.
### System prompt
In Ai2 demos, we use this system prompt by default:
```
You are OLMo 2, a helpful and harmless AI Assistant built by the Allen Institute for AI.
```
The model has not been trained with a specific system prompt in mind.
### Bias, Risks, and Limitations
The OLMo 2 models have limited safety training, but are not deployed automatically with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
See the Falcon 180B model card for an example of this.
## Performance
| Model | Average | AlpacaEval | BBH | DROP | GSM8k | IFEval | MATH | MMLU | Safety | PopQA | TruthQA |
|-------|---------|------------|-----|------|--------|---------|------|-------|---------|-------|---------|
| **Open weights models** |
| Gemma-2-9B-it | 51.9 | 43.7 | 2.5 | 58.8 | 79.7 | 69.9 | 29.8 | 69.1 | 75.5 | 28.3 | 61.4 |
| Ministral-8B-Instruct | 52.1 | 31.4 | 56.2 | 56.2 | 80.0 | 56.4 | 40.0 | 68.5 | 56.2 | 20.2 | 55.5 |
| Mistral-Nemo-Instruct-2407 | 50.9 | 45.8 | 54.6 | 23.6 | 81.4 | 64.5 | 31.9 | 70.0 | 52.7 | 26.9 | 57.7 |
| Qwen-2.5-7B-Instruct | 57.1 | 29.7 | 25.3 | 54.4 | 83.8 | 74.7 | 69.9 | 76.6 | 75.0 | 18.1 | 63.1 |
| Llama-3.1-8B-Instruct | 58.9 | 25.8 | 69.7 | 61.7 | 83.4 | 80.6 | 42.5 | 71.3 | 70.2 | 28.4 | 55.1 |
| Tülu 3 8B | 60.4 | 34.0 | 66.0 | 62.6 | 87.6 | 82.4 | 43.7 | 68.2 | 75.4 | 29.1 | 55.0 |
| Qwen-2.5-14B-Instruct | 60.8 | 34.6 | 34.0 | 50.5 | 83.9 | 82.4 | 70.6 | 81.1 | 79.3 | 21.1 | 70.8 |
| **Fully open models** |
| OLMo-7B-Instruct | 28.2 | 5.2 | 35.3 | 30.7 | 14.3 | 32.2 | 2.1 | 46.3 | 54.0 | 17.1 | 44.5 |
| OLMo-7B-0424-Instruct | 33.1 | 8.5 | 34.4 | 47.9 | 23.2 | 39.2 | 5.2 | 48.9 | 49.3 | 18.9 | 55.2 |
| OLMoE-1B-7B-0924-Instruct | 35.5 | 8.5 | 37.2 | 34.3 | 47.2 | 46.2 | 8.4 | 51.6 | 51.6 | 20.6 | 49.1 |
| MAP-Neo-7B-Instruct | 42.9 | 17.6 | 26.4 | 48.2 | 69.4 | 35.9 | 31.5 | 56.5 | 73.7 | 18.4 | 51.6 |
| *OLMo-2-7B-SFT* | 50.0 | 9.3 | 50.7 | 58.2 | 71.2 | 68.0 | 25.1 | 62.0 | 82.4 | 25.0 | 47.8 |
| *OLMo-2-7B-DPO* | 55.0 | 29.9 | 47.0 | 58.8 | 82.4 | 74.5 | 31.2 | 63.4 | 81.5 | 24.5 | 57.2 |
| *OLMo-2-13B-SFT* | 55.7 | 12.0 | 58.8 | 71.8 | 75.7 | 71.5 | 31.1 | 67.3 | 82.8 | 29.3 | 56.2 |
| *OLMo-2-13B-DPO* | 61.0 | 38.3 | 58.5 | 71.9 | 84.2 | 80.6 | 35.0 | 68.5 | 80.6 | 28.9 | 63.9 |
| **OLMo-2-7B-1124–Instruct** | 55.7 | 31.0 | 48.5 | 58.9 | 85.2 | 75.6 | 31.3 | 63.9 | 81.2 | 24.6 | 56.3 |
| **OLMo-2-13B-1124-Instruct** | 61.4 | 37.5 | 58.4 | 72.1 | 87.4 | 80.4 | 39.7 | 68.6 | 77.5 | 28.8 | 63.9 |
## Hyperparameters
SFT:
- **Learning Rate**: 1E-5 (7B), 7.5E-06 (13B)
- **Effective Batch Size:** 64 (7B), 128 (13B)
- **Max. Sequence Length:** 4096
- **Loss Accumulation:** Sum (see https://unsloth.ai/blog/gradient)
- **Learning Rate Schedule:** Linear
- **LR Warmup Ratio:** 0.03
- **Num. Epochs:** 2
## License and use
OLMo 2 is licensed under the Apache 2.0 license.
OLMo 2 is intended for research and educational use.
For more information, please see our [Responsible Use Guidelines](https://allenai.org/responsible-use).
## Citation
```
@misc{olmo20242olmo2furious,
title={2 OLMo 2 Furious},
author={Team OLMo and Pete Walsh and Luca Soldaini and Dirk Groeneveld and Kyle Lo and Shane Arora and Akshita Bhagia and Yuling Gu and Shengyi Huang and Matt Jordan and Nathan Lambert and Dustin Schwenk and Oyvind Tafjord and Taira Anderson and David Atkinson and Faeze Brahman and Christopher Clark and Pradeep Dasigi and Nouha Dziri and Michal Guerquin and Hamish Ivison and Pang Wei Koh and Jiacheng Liu and Saumya Malik and William Merrill and Lester James V. Miranda and Jacob Morrison and Tyler Murray and Crystal Nam and Valentina Pyatkin and Aman Rangapur and Michael Schmitz and Sam Skjonsberg and David Wadden and Christopher Wilhelm and Michael Wilson and Luke Zettlemoyer and Ali Farhadi and Noah A. Smith and Hannaneh Hajishirzi},
year={2024},
eprint={2501.00656},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2501.00656},
}
``` |