File size: 6,735 Bytes
6cbeb1e 3fd2261 92e6071 6cbeb1e b7e57d5 6cbeb1e 3fd2261 6cbeb1e 783d931 6cbeb1e 4252810 6cbeb1e 3fd2261 6cbeb1e d929682 6cbeb1e 3fd2261 6cbeb1e 3fd2261 6cbeb1e fb25809 783d931 8da7e16 3fd2261 8da7e16 3fd2261 6cbeb1e fb25809 783d931 5280d35 fb25809 6cbeb1e f6558ef 4252810 3fd2261 6cbeb1e 3fd2261 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
license: apache-2.0
language:
- en
tags:
- moe
- olmo
- olmoe
co2_eq_emissions: 1
datasets:
- allenai/ultrafeedback_binarized_cleaned
base_model: allenai/OLMoE-1B-7B-0924-SFT
---
<img alt="OLMoE Logo." src="olmoe-logo.png" width="250px">
# Model Summary
> OLMoE-1B-7B-Instruct is a Mixture-of-Experts LLM with 1B active and 7B total parameters released in September 2024 (0924) that has been adapted via SFT and DPO from [OLMoE-1B-7B](https://hf.co/OLMoE/OLMoE-1B-7B-0924). It yields state-of-the-art performance among models with a similar cost (1B) and is competitive with much larger models like Llama2-13B-Chat. OLMoE is 100% open-source.
This information and more can also be found on the [**OLMoE GitHub repository**](https://github.com/allenai/OLMoE).
- **Paper**: (Soon)
- **Pretraining** [Checkpoints](https://hf.co/allenai/OLMoE-1B-7B-0924), [Code](https://github.com/allenai/OLMo/tree/Muennighoff/MoE), [Data](https://huggingface.co/datasets/allenai/OLMoE-mix-0924) and [Logs](https://wandb.ai/ai2-llm/olmoe/reports/OLMoE-1B-7B-0924--Vmlldzo4OTcyMjU3).
- **SFT (Supervised Fine-Tuning)** [Checkpoints](https://huggingface.co/allenai/OLMoE-1B-7B-0924-SFT), [Code](https://github.com/allenai/open-instruct/tree/olmoe-sft), [Data](https://hf.co/datasets/allenai/tulu-v3.1-mix-preview-4096-OLMoE) and [Logs](https://github.com/allenai/OLMoE/blob/main/logs/olmoe-sft-logs.txt).
- **DPO/KTO (Direct Preference Optimization/Kahneman-Tversky Optimization)**, [Checkpoints](https://huggingface.co/allenai/OLMoE-1B-7B-0924-Instruct), [Preference Data](https://hf.co/datasets/allenai/ultrafeedback_binarized_cleaned), [DPO code](https://github.com/allenai/open-instruct/tree/olmoe-sft), [KTO code](https://github.com/Muennighoff/kto/blob/master/kto.py) and [Logs](https://github.com/allenai/OLMoE/blob/main/logs/olmoe-dpo-logs.txt).
# Use
Install `transformers` **from source** until a release after [this PR](https://github.com/huggingface/transformers/pull/32406) & `torch` and run:
```python
from transformers import OlmoeForCausalLM, AutoTokenizer
import torch
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Load different ckpts via passing e.g. `revision=kto`
model = OlmoeForCausalLM.from_pretrained("allenai/OLMoE-1B-7B-0924-Instruct").to(DEVICE)
tokenizer = AutoTokenizer.from_pretrained("allenai/OLMoE-1B-7B-0924-Instruct")
messages = [{"role": "user", "content": "Explain to me like I'm five what is Bitcoin."}]
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(DEVICE)
out = model.generate(inputs, max_length=100)
print(tokenizer.decode(out[0]))
"""
<|endoftext|><|user|>
Explain to me like I'm five what is Bitcoin.
<|assistant|>
Bitcoin is like a special kind of money that you can use to buy things online. But unlike regular money, like dollars or euros, Bitcoin isn't printed by governments or banks. Instead, it's created by a special computer program that helps people keep track of it.
Here's how it works: imagine you have a bunch of toys, and you want to
"""
```
Branches:
- `main`: Preference tuned via DPO model of https://hf.co/OLMoE/OLMoE-1B-7B-0924-SFT (`main` branch)
- `load-balancing`: Ablation with load balancing loss during DPO starting from the `load-balancing` branch of https://hf.co/allenai/OLMoE-1B-7B-0924-SFT
- `non-annealed`: Ablation starting from the `non-annealed` branch of https://hf.co/allenai/OLMoE-1B-7B-0924-SFT which is an SFT of the pretraining checkpoint prior to annealing (branch `step1200000-tokens5033B` of https://hf.co/allenai/OLMoE-1B-7B-0924)
- `kto`: Ablation using KTO instead of DPO. This branch is the checkpoint after 5,000 steps with the RMS optimizer. The other `kto*` branches correspond to the other checkpoints mentioned in the paper.
# Evaluation Snapshot
| Task (→) | MMLU | GSM8k | BBH | Human-Eval | Alpaca-Eval 1.0 | XSTest | IFEval | Avg |
|---------------|------|-------|------|------------|-----------------|--------|--------|------|
| **Setup (→)** | 0-shot | 8-shot CoT | 3-shot | 0-shot | 0-shot | 0-shot | 0-shot | |
| **Metric (→)** | EM | EM | EM | Pass@10 | %win | F1 | Loose Acc | |
| | | | | | | | | |
| OLMo-1B (0724) | 25.0 | 7.0 | 22.5 | 16.0 | - | 67.6 | 20.5 | - |
| +SFT | 36.0 | 12.5 | 27.2 | 21.2 | 41.5 | 81.9 | 26.1 | 35.9 |
| +DPO | 36.7 | 12.5 | 30.6 | 22.0 | 50.9 | 79.8 | 24.2 | 37.4 |
| OLMo-7B (0724) | 50.8 | 32.5 | 36.9 | 32.3 | - | 80.8 | 19.6 | - |
| +SFT | 54.2 | 25.0 | 35.7 | 38.5 | 70.9 | 86.1 | 39.7 | 49.3 |
| +DPO | 52.8 | 9.0 | 16.6 | 35.0 | 83.5 | **87.5** | 37.9 | 49.1 |
| JetMoE-2B-9B | 45.6 | 43.0 | 37.2 | 54.6 | - | 68.2 | 20.0 | - |
| +SFT | 46.1 | 53.5 | 35.6 | 64.8 | 69.3 | 55.6 | 30.5 | 50.4 |
| DeepSeek-3B-16B | 37.7 | 18.5 | 39.4 | 48.3 | - | 65.9 | 13.5 | - |
| +Chat | 48.5 | 46.5 | **40.8** | **70.1** | 74.8 | 85.6 | 32.3 | 57.0 |
| Qwen1.5-3B-14B | **60.4** | 13.5 | 27.2 | 60.2 | - | 73.4 | 20.9 | - |
| +Chat | 58.9 | **55.5** | 21.3 | 59.7 | 83.9 | 85.6 | 36.2 | 57.3 |
| **OLMoE (This Model)** | 49.8 | 3.0 | 33.6 | 22.4 | - | 59.7 | 16.6 | - |
| **+SFT** | 51.4 | 40.5 | 38.0 | 51.6 | 69.2 | 84.1 | 43.3 | 54.0 |
| **+DPO** | 51.9 | 45.5 | 37.0 | 54.8 | **84.0** | 82.6 | **48.1** | **57.7** |
# Bias, Risks, and Limitations
This adapted OLMo model is a research artifact. It is intended to benefit the research community interested in understanding the safety properties of LLMs and developers building safety tools for LLMs. For this reason, the model does not include a specific safety filter or safety training data.
While the model refuses some requests, it is possible for the model to generate harmful and sensitive content from some user prompts. We recommend developers exercise caution and consider the risks of the applications of this technology. Furthermore, developers should consider implementing safeguards for biases, privacy, and other potential harms when appropriate. Finally, as with every LLM, OLMo may produce factual-sounding outputs that may not be true, so developers and users are encouraged to confirm such outputs before relying on them. All users of this model are responsible for how they use the model.
# Citation
```bibtex
TODO
``` |