hamishivi commited on
Commit
824153b
·
1 Parent(s): c2bf901

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - databricks/databricks-dolly-15k
4
+ language:
5
+ - en
6
+ ---
7
+
8
+ # Open-Instruct Dolly 13B
9
+
10
+ This model is a 13B LLaMa model finetuned on the Dolly dataset. *Please note this is a model diff - see below for usage instructions*.
11
+
12
+ This was trained as part of the paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751).
13
+ The codebase used to train and evaluate this model can be found at [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct).
14
+
15
+ This model is licensed under the AI model license given in LICENSE.txt along with the original Llama license (llama_license.txt).
16
+
17
+ ## Usage
18
+
19
+ We assume you have access to a LLaMa model in HF format already. You can find details on getting access and converting the model here:
20
+ [https://huggingface.co/docs/transformers/main/model_doc/llama](https://huggingface.co/docs/transformers/main/model_doc/llama)
21
+
22
+ Clone [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct) and install the required dependencies, or just copy `scripts/weight_diff.py`
23
+ and install the minimal requirements listed in `weight-diff-requirements.txt`. Then download or clone this model diff to the same machine.
24
+
25
+ Then, run:
26
+ ```bash
27
+ python scripts/weight_diff.py recover --path_raw ${hf_llama_path} --path_tuned ${output_path} --path_diff ${diff_location}
28
+ ```
29
+
30
+ And you will have a recovered model! Note this takes up a decent amount of RAM, especially for the larger models.
31
+
32
+ ## Input Format
33
+
34
+ The model is trained to use the following format (note the newlines):
35
+ ```
36
+ <|user|>
37
+ Your message here!
38
+ <|assistant|>
39
+ ```
40
+
41
+ For best results, format all inputs in this manner.
42
+
43
+ ## Performance
44
+
45
+ Here is the performance of this model across benchmarks explored in our paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751):
46
+
47
+ | MMLU 0-shot | MMLU 5-shot | GSM Direct | GSM CoT | BBH Direct | BBH CoT | TydiQA Gold-Passage | TydiQA Closed-book | Codex-Eval Pass@1 | Codex-Eval Pass@10 | AlpacaFarm vs Davinci-003 | Average |
48
+ |:-----------:|:-----------:|:----------:|:-------:|:----------:|:-------:|:-------------------:|:------------------:|:-----------------:|:------------------:|:-------------------------:|---------|
49
+ | 45.3 | 44.7 | 6.0 | 17.0 | 31.4 | 26.0 | 46.8 | 12.4 | 13.4 | 31.4 | 16.2 | 25.5 |
50
+
51
+ If you use this model, please cite our work, the llama paper, and the original dataset:
52
+
53
+ ```
54
+ @article{camelevaluation,
55
+ title={How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources},
56
+ author={Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Raghavi Chandu, David Wadden, Kelsey MacMillan, Noah A. Smith, Iz Beltagy, Hannaneh Hajishirzi},
57
+ year={2023}
58
+ }
59
+ ```
60
+
61
+ ```
62
+ @misc{touvron2023llama,
63
+ title={LLaMA: Open and Efficient Foundation Language Models},
64
+ author={Hugo Touvron and Thibaut Lavril and Gautier Izacard and Xavier Martinet and Marie-Anne Lachaux and Timothée Lacroix and Baptiste Rozière and Naman Goyal and Eric Hambro and Faisal Azhar and Aurelien Rodriguez and Armand Joulin and Edouard Grave and Guillaume Lample},
65
+ year={2023},
66
+ eprint={2302.13971},
67
+ archivePrefix={arXiv},
68
+ primaryClass={cs.CL}
69
+ }
70
+ ```
71
+
72
+ ```
73
+ @misc{dolly,
74
+ author = {Databricks},
75
+ title = {Free Dolly: Introducing the World's First Truly Open Instruction-Tuned LLM},
76
+ year = {2023},
77
+ publisher = {GitHub},
78
+ journal = {GitHub repository},
79
+ howpublished = {Blog post},
80
+ url = {https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm}
81
+ }
82
+ ```