hamishivi commited on
Commit
ae940f7
·
verified ·
1 Parent(s): 6efa575

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ model-index:
3
+ - name: tulu-v2.5-ppo-13b-uf-mean-70b-uf-rm-mixed-prompts-value
4
+ results: []
5
+ datasets:
6
+ - allenai/tulu-2.5-preference-data
7
+ - allenai/tulu-v2-sft-mixture
8
+ language:
9
+ - en
10
+ base_model: allenai/tulu-v2.5-70b-uf-rm
11
+ license: apache-2.0
12
+ ---
13
+ <center>
14
+ <img src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/tulu-2.5/tulu_25_banner.png" alt="Tulu 2.5 banner image" width="800px"/>
15
+ </center>
16
+
17
+ # Model Card for Tulu V2.5 70B RM - UltraFeedback w/ Mixed Prompts Value Model
18
+
19
+ Tulu is a series of language models that are trained to act as helpful assistants.
20
+ Tulu V2.5 is a series of models trained using DPO and PPO starting from the [Tulu 2 suite](https://huggingface.co/collections/allenai/tulu-v2-suite-6551b56e743e6349aab45101).
21
+ This is a **value** model produced during the PPO training of [this](https://huggingface.co/allenai/tulu-v2.5-ppo-13b-uf-mean-70b-uf-rm-mixed-prompts) model.
22
+ We release the value model as it may provide a good starting point for additional research or improved decoding with our released PPO models.
23
+
24
+ For more details, read the paper:
25
+ [Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback](https://link.todo).
26
+
27
+
28
+ ## .Model description
29
+
30
+ - **Model type:** One model belonging to a suite of RLHF tuned chat models on a mix of publicly available, synthetic and human-created datasets.
31
+ - **Language(s) (NLP):** English
32
+ - **License:** Apache 2.0.
33
+ - **Finetuned from model:** [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf)
34
+
35
+ ### Model Sources
36
+
37
+ - **Repository:** https://github.com/allenai/open-instruct
38
+ - **Dataset:** Prompts used during PPO training can be found [here](https://huggingface.co/datasets/allenai/tulu-2.5-preference-data) - specifically the `ultrafeedback_mean_aspects` split.
39
+ - **Model Family:** The collection of related models can be found [here](https://huggingface.co/collections/allenai/tulu-v25-suite-66676520fd578080e126f618).
40
+
41
+ ## Input Format
42
+
43
+ The model is trained to use the following format (note the newlines):
44
+ ```
45
+ <|user|>
46
+ Your message here!
47
+ <|assistant|>
48
+ ```
49
+
50
+ For best results, format all inputs in this manner. **Make sure to include a newline after `<|assistant|>`, this can affect generation quality quite a bit.**
51
+ We have included a [chat template](https://huggingface.co/docs/transformers/main/en/chat_templating) in the tokenizer implementing this template.
52
+
53
+ ## Intended uses & limitations
54
+
55
+ The model was initially fine-tuned on a filtered and preprocessed of the [Tulu V2 mix dataset](https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture), which contains a diverse range of human created instructions and synthetic dialogues generated primarily by other LLMs.
56
+ We then further trained the model with a [Jax PPO trainer](https://github.com/hamishivi/EasyLM/blob/main/EasyLM/models/llama/llama_train_ppo.py) built on [EasyLM](https://github.com/young-geng/EasyLM) on the dataset mentioned above.
57
+ This model is meant as a research artefact.
58
+
59
+ ### Training hyperparameters
60
+
61
+ The following hyperparameters were used during overall PPO training:
62
+ - learning_rate: 1e-06
63
+ - total_train_batch_size: 64
64
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
65
+ - lr_scheduler_type: linear
66
+ - lr_scheduler_warmup_ratio: 0.1
67
+ - num_epochs: 1.0
68
+ - KL penalty coefficient: 0.0325
69
+
70
+ ## Citation
71
+
72
+ If you find Tulu 2.5 is useful in your work, please cite it with:
73
+
74
+ ```
75
+ @misc{ivison2024unpacking,
76
+ title={{Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback}},
77
+ author={{Hamish Ivison and Yizhong Wang and Jiacheng Liu and Ellen Wu and Valentina Pyatkin and Nathan Lambert and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi}}
78
+ year={2024},
79
+ archivePrefix={arXiv},
80
+ primaryClass={cs.CL}
81
+ }
82
+ ```