File size: 5,254 Bytes
3a0641d
 
 
 
 
 
 
 
 
2856950
3f452b6
2856950
3f452b6
2856950
3a0641d
2856950
3a0641d
2856950
3a0641d
 
 
 
 
 
 
 
 
 
2856950
3a0641d
 
 
 
 
 
2856950
 
3a0641d
 
 
 
 
 
 
 
 
2856950
 
3a0641d
2856950
 
 
 
 
3a0641d
 
 
 
 
 
 
 
 
 
 
2856950
9275231
3a0641d
 
 
 
 
 
2856950
 
 
3a0641d
 
 
 
 
 
 
2856950
 
3a0641d
 
 
 
 
2856950
 
 
3a0641d
 
9275231
2856950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
---
language: fr
license: mit
datasets:
- oscar
---

# CamemBERT: a Tasty French Language Model

## Introduction

[CamemBERT](https://arxiv.org/abs/1911.03894) is a state-of-the-art language model for French based on the RoBERTa model. 

It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains. 

For further information or requests, please go to [Camembert Website](https://camembert-model.fr/)

## Pre-trained models

| Model                          | #params                        | Arch. | Training data                     |
|--------------------------------|--------------------------------|-------|-----------------------------------|
| `camembert-base` | 110M   | Base  | OSCAR (138 GB of text)            |
| `camembert/camembert-large`              | 335M    | Large | CCNet (135 GB of text)            |
| `camembert/camembert-base-ccnet`         | 110M    | Base  | CCNet (135 GB of text)            |
| `camembert/camembert-base-wikipedia-4gb` | 110M    | Base  | Wikipedia (4 GB of text)          |
| `camembert/camembert-base-oscar-4gb`     | 110M    | Base  | Subsample of OSCAR (4 GB of text) |
| `camembert/camembert-base-ccnet-4gb`     | 110M    | Base  | Subsample of CCNet (4 GB of text) |

## How to use CamemBERT with HuggingFace

##### Load CamemBERT and its sub-word tokenizer :
```python
from transformers import CamembertModel, CamembertTokenizer

# You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large".
tokenizer = CamembertTokenizer.from_pretrained("camembert/camembert-base-wikipedia-4gb")
camembert = CamembertModel.from_pretrained("camembert/camembert-base-wikipedia-4gb")

camembert.eval()  # disable dropout (or leave in train mode to finetune)

```

##### Filling masks using pipeline 
```python
from transformers import pipeline 

camembert_fill_mask  = pipeline("fill-mask", model="camembert/camembert-base-wikipedia-4gb", tokenizer="camembert/camembert-base-wikipedia-4gb")
results = camembert_fill_mask("Le camembert est un fromage de <mask>!")
# results
#[{'sequence': '<s> Le camembert est un fromage de chèvre!</s>', 'score': 0.4937814474105835, 'token': 19370}, 
#{'sequence': '<s> Le camembert est un fromage de brebis!</s>', 'score': 0.06255942583084106, 'token': 30616}, 
#{'sequence': '<s> Le camembert est un fromage de montagne!</s>', 'score': 0.04340197145938873, 'token': 2364},
# {'sequence': '<s> Le camembert est un fromage de Noël!</s>', 'score': 0.02823255956172943, 'token': 3236}, 
#{'sequence': '<s> Le camembert est un fromage de vache!</s>', 'score': 0.021357402205467224, 'token': 12329}]
```

##### Extract contextual embedding features from Camembert output 
```python
import torch
# Tokenize in sub-words with SentencePiece
tokenized_sentence = tokenizer.tokenize("J'aime le camembert !")
# ['▁J', "'", 'aime', '▁le', '▁ca', 'member', 't', '▁!'] 

# 1-hot encode and add special starting and end tokens 
encoded_sentence = tokenizer.encode(tokenized_sentence)
# [5, 221, 10, 10600, 14, 8952, 10540, 75, 1114, 6]
# NB: Can be done in one step : tokenize.encode("J'aime le camembert !")

# Feed tokens to Camembert as a torch tensor (batch dim 1)
encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0)
embeddings, _ = camembert(encoded_sentence)
# embeddings.detach()
# embeddings.size torch.Size([1, 10, 768])
#tensor([[[-0.0928,  0.0506, -0.0094,  ..., -0.2388,  0.1177, -0.1302],
#         [ 0.0662,  0.1030, -0.2355,  ..., -0.4224, -0.0574, -0.2802],
#         [-0.0729,  0.0547,  0.0192,  ..., -0.1743,  0.0998, -0.2677],
#         ...,
```

##### Extract contextual embedding features from all Camembert layers
```python
from transformers import CamembertConfig
# (Need to reload the model with new config)
config = CamembertConfig.from_pretrained("camembert/camembert-base-wikipedia-4gb", output_hidden_states=True)
camembert = CamembertModel.from_pretrained("camembert/camembert-base-wikipedia-4gb", config=config)

embeddings, _, all_layer_embeddings = camembert(encoded_sentence)
#  all_layer_embeddings list of len(all_layer_embeddings) == 13 (input embedding layer + 12 self attention layers)
all_layer_embeddings[5]
# layer 5 contextual embedding : size torch.Size([1, 10, 768])
#tensor([[[-0.0059, -0.0227,  0.0065,  ..., -0.0770,  0.0369,  0.0095],
#         [ 0.2838, -0.1531, -0.3642,  ..., -0.0027, -0.8502, -0.7914],
#         [-0.0073, -0.0338, -0.0011,  ...,  0.0533, -0.0250, -0.0061],
#         ...,
```


## Authors 

CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.


## Citation
If you use our work, please cite:

```bibtex
@inproceedings{martin2020camembert,
  title={CamemBERT: a Tasty French Language Model},
  author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},
  booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
  year={2020}
}
```