--- language: fr license: mit tags: - deberta-v2 - token-classification base_model: almanach/camembertav2-base datasets: - GSD metrics: - las - upos model-index: - name: almanach/camembertav2-base-gsd results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: GSD name: GSD metrics: - name: upos type: upos value: 0.98572 verified: false - task: type: token-classification name: Dependency Parsing dataset: type: GSD name: GSD metrics: - name: las type: las value: 0.94517 verified: false --- # Model Card for almanach/camembertav2-base-gsd almanach/camembertav2-base-gsd is a deberta-v2 model for token classification. It is trained on the GSD dataset for the task of Part-of-Speech Tagging and Dependency Parsing. The model achieves an f1 score of on the GSD dataset. The model is part of the almanach/camembertav2-base family of model finetunes. ## Model Details ### Model Description - **Developed by:** Wissam Antoun (Phd Student at Almanach, Inria-Paris) - **Model type:** deberta-v2 - **Language(s) (NLP):** French - **License:** MIT - **Finetuned from model :** almanach/camembertav2-base ### Model Sources - **Repository:** https://github.com/WissamAntoun/camemberta - **Paper:** https://arxiv.org/abs/2411.08868 ## Uses The model can be used for token classification tasks in French for Part-of-Speech Tagging and Dependency Parsing. ## Bias, Risks, and Limitations The model may exhibit biases based on the training data. The model may not generalize well to other datasets or tasks. The model may also have limitations in terms of the data it was trained on. ## How to Get Started with the Model You can use the models directly with the hopsparser library in server mode https://github.com/hopsparser/hopsparser/blob/main/docs/server.md ## Training Details ### Training Procedure Model trained with the [hopsparser](https://github.com/hopsparser/hopsparser) library on the GSD dataset. #### Training Hyperparameters ```yml # Layer dimensions mlp_input: 1024 mlp_tag_hidden: 16 mlp_arc_hidden: 512 mlp_lab_hidden: 128 # Lexers lexers: - name: word_embeddings type: words embedding_size: 256 word_dropout: 0.5 - name: char_level_embeddings type: chars_rnn embedding_size: 64 lstm_output_size: 128 - name: fasttext type: fasttext - name: camembertav2_base_p2_17k_last_layer type: bert model: /scratch/camembertv2/runs/models/camembertav2-base-bf16/post/ckpt-p2-17000/pt/discriminator/ layers: [11] subwords_reduction: "mean" # Training hyperparameters encoder_dropout: 0.5 mlp_dropout: 0.5 batch_size: 8 epochs: 64 lr: base: 0.00003 schedule: shape: linear warmup_steps: 100 ``` #### Results **UPOS:** 0.98572 **LAS:** 0.94517 ## Technical Specifications ### Model Architecture and Objective deberta-v2 custom model for token classification. ## Citation **BibTeX:** ```bibtex @misc{antoun2024camembert20smarterfrench, title={CamemBERT 2.0: A Smarter French Language Model Aged to Perfection}, author={Wissam Antoun and Francis Kulumba and Rian Touchent and Éric de la Clergerie and Benoît Sagot and Djamé Seddah}, year={2024}, eprint={2411.08868}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2411.08868}, } @inproceedings{grobol:hal-03223424, title = {Analyse en dépendances du français avec des plongements contextualisés}, author = {Grobol, Loïc and Crabbé, Benoît}, url = {https://hal.archives-ouvertes.fr/hal-03223424}, booktitle = {Actes de la 28ème Conférence sur le Traitement Automatique des Langues Naturelles}, eventtitle = {TALN-RÉCITAL 2021}, venue = {Lille, France}, pdf = {https://hal.archives-ouvertes.fr/hal-03223424/file/HOPS_final.pdf}, hal_id = {hal-03223424}, hal_version = {v1}, } ```