Create configuration_manta.py
Browse files- configuration_manta.py +197 -0
configuration_manta.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020, The Manta Authors and HuggingFace Inc.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Manta model configuration"""
|
16 |
+
from typing import Mapping
|
17 |
+
|
18 |
+
from transformers.configuration_utils import PretrainedConfig
|
19 |
+
from transformers.onnx import OnnxSeq2SeqConfigWithPast
|
20 |
+
from transformers.utils import logging
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
MANTA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
26 |
+
"nthngdy/manta-base": "https://huggingface.co/nthngdy/manta-base/resolve/main/config.json",
|
27 |
+
}
|
28 |
+
|
29 |
+
|
30 |
+
class MantaConfig(PretrainedConfig):
|
31 |
+
r"""
|
32 |
+
This is the configuration class to store the configuration of a [`MantaModel`] or a [`TFMantaModel`]. It is used to
|
33 |
+
instantiate a Manta model according to the specified arguments, defining the model architecture. Instantiating a
|
34 |
+
configuration with the defaults will yield a similar configuration to that of the Manta-base architecture.
|
35 |
+
|
36 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
+
documentation from [`PretrainedConfig`] for more information.
|
38 |
+
|
39 |
+
Arguments:
|
40 |
+
vocab_size (`int`, *optional*, defaults to 32128):
|
41 |
+
Vocabulary size of the Manta model. Defines the number of different tokens that can be represented by the
|
42 |
+
`inputs_ids` passed when calling [`MantaModel`] or [`TFMantaModel`].
|
43 |
+
byte_embedding_dim (`int`, *optional*, defaults to 64):
|
44 |
+
Size of the input byte embeddings fed to the MANTa tokenization module.
|
45 |
+
frontier_predictor_num_layers (`int`, *optional*, defaults to 1):
|
46 |
+
Number of sliding window attention layers in the frontier predictor of the tokenization module.
|
47 |
+
frontier_predictor_num_attention_heads (`int`, *optional*, defaults to 8):
|
48 |
+
Number of attention heads in the frontier predictor of the tokenization module.
|
49 |
+
frontier_predictor_attention_window (`int`, *optional*, defaults to 16):
|
50 |
+
Size of the sliding attention window along the byte sequence.
|
51 |
+
pooling_variance_regularization (`float`, *optional*, defaults to 1.0e-6):
|
52 |
+
Variance regularization term used in the computation of the byte-block assignment map.
|
53 |
+
pooling_kernel_size (`int` or `List[List[int]]`, *optional*, defaults to 3):
|
54 |
+
Size(s) of the 1D-convolution kernel(s) used for the byte pooling operation in the tokenization module. Providing an integer
|
55 |
+
will imply using a convolution filter of `(pooling_kernel_size, byte_embedding_dim)`. Several kernel sizes can be provided
|
56 |
+
in the form `[(kernel_size, num_channels), ...]`. These will be concatenated in the style of [Character BERT](https://arxiv.org/pdf/2010.10392.pdf).
|
57 |
+
pooling_depthwise_convolution (`bool`, *optional*, defaults to `True`):
|
58 |
+
Activates depthwise convolution in the pooling operation of the tokenization module. Depthwise convolution will be faster, but might be
|
59 |
+
less powerful than normal convolution, and impedes using different number of channels.
|
60 |
+
pooling_mean_pool (`bool`, *optional*, defaults to `False`):
|
61 |
+
Activates mean-pooling instead of default max-pooling as the reduction operation for each block.
|
62 |
+
max_length_inputs (`int`, *optional*, defaults to 256):
|
63 |
+
Maximum sequence length of the byte input sequences. Can be greater than max_length_encoder_decoder.
|
64 |
+
max_length_encoder_decoder (`int`, *optional*, defaults to 256):
|
65 |
+
Maximum output sequence length of the tokenization module. This allows to control the length of the sequences that the encoder-decoder model receives.
|
66 |
+
d_model (`int`, *optional*, defaults to 512):
|
67 |
+
Size of the encoder layers and the pooler layer.
|
68 |
+
d_kv (`int`, *optional*, defaults to 64):
|
69 |
+
Size of the key, query, value projections per attention head. `d_kv` has to be equal to `d_model //
|
70 |
+
num_heads`.
|
71 |
+
d_ff (`int`, *optional*, defaults to 2048):
|
72 |
+
Size of the intermediate feed forward layer in each `MantaBlock`.
|
73 |
+
num_layers (`int`, *optional*, defaults to 6):
|
74 |
+
Number of hidden layers in the Transformer encoder.
|
75 |
+
num_decoder_layers (`int`, *optional*):
|
76 |
+
Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set.
|
77 |
+
num_heads (`int`, *optional*, defaults to 8):
|
78 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
79 |
+
relative_attention_num_buckets (`int`, *optional*, defaults to 32):
|
80 |
+
The number of buckets to use for each attention layer.
|
81 |
+
relative_attention_max_distance (`int`, *optional*, defaults to 128):
|
82 |
+
The maximum distance of the longer sequences for the bucket separation.
|
83 |
+
dropout_rate (`float`, *optional*, defaults to 0.1):
|
84 |
+
The ratio for all dropout layers.
|
85 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
|
86 |
+
The epsilon used by the layer normalization layers.
|
87 |
+
initializer_factor (`float`, *optional*, defaults to 1):
|
88 |
+
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
89 |
+
testing).
|
90 |
+
feed_forward_proj (`string`, *optional*, defaults to `"relu"`):
|
91 |
+
Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. Mantav1.1 uses the
|
92 |
+
`"gated-gelu"` feed forward projection. Original Manta uses `"relu"`.
|
93 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
94 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
95 |
+
"""
|
96 |
+
model_type = "manta"
|
97 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
98 |
+
attribute_map = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"}
|
99 |
+
|
100 |
+
def __init__(
|
101 |
+
self,
|
102 |
+
vocab_size=384,
|
103 |
+
byte_embedding_dim=64,
|
104 |
+
frontier_predictor_num_layers=1,
|
105 |
+
frontier_predictor_num_attention_heads=8,
|
106 |
+
frontier_predictor_attention_window=16,
|
107 |
+
pooling_variance_regularization=1.0e-6,
|
108 |
+
pooling_kernel_size=3,
|
109 |
+
pooling_depthwise_convolution=True,
|
110 |
+
pooling_mean_pool=False,
|
111 |
+
max_length_inputs=256,
|
112 |
+
max_length_encoder_decoder=256,
|
113 |
+
d_model=512,
|
114 |
+
d_kv=64,
|
115 |
+
d_ff=2048,
|
116 |
+
num_layers=6,
|
117 |
+
num_decoder_layers=None,
|
118 |
+
num_heads=8,
|
119 |
+
relative_attention_num_buckets=32,
|
120 |
+
relative_attention_max_distance=128,
|
121 |
+
dropout_rate=0.1,
|
122 |
+
layer_norm_epsilon=1e-6,
|
123 |
+
initializer_factor=1.0,
|
124 |
+
feed_forward_proj="relu",
|
125 |
+
is_encoder_decoder=True,
|
126 |
+
use_cache=True,
|
127 |
+
pad_token_id=0,
|
128 |
+
eos_token_id=1,
|
129 |
+
**kwargs
|
130 |
+
):
|
131 |
+
self.vocab_size = vocab_size
|
132 |
+
self.byte_embedding_dim = byte_embedding_dim
|
133 |
+
self.frontier_predictor_num_layers = frontier_predictor_num_layers
|
134 |
+
self.frontier_predictor_num_attention_heads = frontier_predictor_num_attention_heads
|
135 |
+
self.frontier_predictor_attention_window = frontier_predictor_attention_window
|
136 |
+
self.pooling_variance_regularization = pooling_variance_regularization
|
137 |
+
self.pooling_kernel_size = pooling_kernel_size
|
138 |
+
self.pooling_depthwise_convolution = pooling_depthwise_convolution
|
139 |
+
self.pooling_mean_pool = pooling_mean_pool
|
140 |
+
self.max_length_inputs = max_length_inputs
|
141 |
+
self.max_length_encoder_decoder = max_length_encoder_decoder
|
142 |
+
self.d_model = d_model
|
143 |
+
self.d_kv = d_kv
|
144 |
+
self.d_ff = d_ff
|
145 |
+
self.num_layers = num_layers
|
146 |
+
self.num_decoder_layers = (
|
147 |
+
num_decoder_layers if num_decoder_layers is not None else self.num_layers
|
148 |
+
) # default = symmetry
|
149 |
+
self.num_heads = num_heads
|
150 |
+
self.relative_attention_num_buckets = relative_attention_num_buckets
|
151 |
+
self.relative_attention_max_distance = relative_attention_max_distance
|
152 |
+
self.dropout_rate = dropout_rate
|
153 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
154 |
+
self.initializer_factor = initializer_factor
|
155 |
+
self.feed_forward_proj = feed_forward_proj
|
156 |
+
self.use_cache = use_cache
|
157 |
+
|
158 |
+
act_info = self.feed_forward_proj.split("-")
|
159 |
+
self.dense_act_fn = act_info[-1]
|
160 |
+
self.is_gated_act = act_info[0] == "gated"
|
161 |
+
|
162 |
+
if len(act_info) > 1 and act_info[0] != "gated" or len(act_info) > 2:
|
163 |
+
raise ValueError(
|
164 |
+
f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."
|
165 |
+
"Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. "
|
166 |
+
"'gated-gelu' or 'relu'"
|
167 |
+
)
|
168 |
+
|
169 |
+
if (
|
170 |
+
pooling_depthwise_convolution
|
171 |
+
and isinstance(pooling_kernel_size, list)
|
172 |
+
and any(size != byte_embedding_dim for _, size in pooling_kernel_size)
|
173 |
+
):
|
174 |
+
raise ValueError(
|
175 |
+
f"`pooling_kernel_size`: {pooling_kernel_size} is not a valid list of kernels when "
|
176 |
+
f"`pooling_depthwise_convolution` is True. Please set all kernel dimensions to {byte_embedding_dim}"
|
177 |
+
f"(=`byte_embedding_dim`) or `pooling_depthwise_convolution“ to False."
|
178 |
+
)
|
179 |
+
|
180 |
+
tie_word_embeddings = kwargs.pop("tie_word_embeddings", False)
|
181 |
+
if tie_word_embeddings and byte_embedding_dim != d_model:
|
182 |
+
raise ValueError(
|
183 |
+
f"The input embedding dimension (`byte_embedding_dim={byte_embedding_dim}`) is not the same as the "
|
184 |
+
f"model hidden dimension (`d_model={d_model}`), making it impossible to tie input and output weights."
|
185 |
+
)
|
186 |
+
|
187 |
+
# for backwards compatibility
|
188 |
+
if feed_forward_proj == "gated-gelu":
|
189 |
+
self.dense_act_fn = "gelu_new"
|
190 |
+
|
191 |
+
super().__init__(
|
192 |
+
pad_token_id=pad_token_id,
|
193 |
+
eos_token_id=eos_token_id,
|
194 |
+
is_encoder_decoder=is_encoder_decoder,
|
195 |
+
tie_word_embeddings=tie_word_embeddings,
|
196 |
+
**kwargs,
|
197 |
+
)
|