--- license: mit model-index: - name: blockchainlabs_tinyllama_fusion_LHK_yunkong_v2 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 34.9 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alnrg2arg/blockchainlabs_tinyllama_fusion_LHK_yunkong_v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 63.11 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alnrg2arg/blockchainlabs_tinyllama_fusion_LHK_yunkong_v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 26.75 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alnrg2arg/blockchainlabs_tinyllama_fusion_LHK_yunkong_v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 37.33 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alnrg2arg/blockchainlabs_tinyllama_fusion_LHK_yunkong_v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 57.14 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alnrg2arg/blockchainlabs_tinyllama_fusion_LHK_yunkong_v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 0.76 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alnrg2arg/blockchainlabs_tinyllama_fusion_LHK_yunkong_v2 name: Open LLM Leaderboard --- This model is based on the fusion strategy offered by Fanqi Wan(https://github.com/fanqiwan/FuseLLM). Three models are fused together. 10epochs Base model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 Blending model 1: HanNayeoniee/LHK_DPO_v1 Blending model 2: yunconglong/Truthful_DPO_TomGrc_FusionNet_7Bx2_MoE_13B This model will be optimized by Laser and DPO later. This project is to make the on-device sLM. We are doing experiments on the models. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_alnrg2arg__blockchainlabs_tinyllama_fusion_LHK_yunkong_v2) | Metric |Value| |---------------------------------|----:| |Avg. |36.67| |AI2 Reasoning Challenge (25-Shot)|34.90| |HellaSwag (10-Shot) |63.11| |MMLU (5-Shot) |26.75| |TruthfulQA (0-shot) |37.33| |Winogrande (5-shot) |57.14| |GSM8k (5-shot) | 0.76|