File size: 2,081 Bytes
83285c3
 
 
 
 
 
 
 
 
 
 
 
4105f1c
83285c3
 
 
 
 
 
 
 
 
 
 
4105f1c
83285c3
 
 
4105f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83285c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4105f1c
83285c3
4105f1c
83285c3
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: bigscience-bloom-rail-1.0
base_model: bigscience/bloom-1b7
tags:
- generated_from_trainer
model-index:
- name: Bloom-1b7-dialogsum-IT
  results: []
---

# Bloom-1b7-dialogsum-IT

This model is a instruction-tuned version of [bigscience/bloom-1b7](https://huggingface.co/bigscience/bloom-1b7) on a dialog summation dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

Instruction Tuned on the dialog summation task here: https://huggingface.co/datasets/adambjorn/UnrelatedForgettingOverhead/viewer/dialogsum/train

## Training procedure

Given a set of prompts:

``` python
prompts = [
    "Provide a concise summary for the following dialogue:",
    "Summarize this conversation in a few sentences:",
    "Here is a dialogue. Can you summarize it briefly?",
    "Read the following dialogue and write a short summary:",
    "Condense the essence of this conversation into a summary:"
]
```

Each example is concatenated with the prompt, the dialogue, and the summary as so:

``` python
    concatenated_texts = [
        random.choice(prompts) + " " + dialogue + "<\s>" + " Summary:" + summary
        for dialogue, summary in zip(examples['dialogue'], examples['summary'])
    ]
```

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

Final epoch results: {'loss': 0.0137, 'grad_norm': 0.6599154472351074, 'learning_rate': 7.000000000000001e-07, 'epoch': 10.0}

Average results: {'train_runtime': 1142.1524, 'train_samples_per_second': 1.751, 'train_steps_per_second': 0.438, 'train_loss': 0.37129621666669843, 'epoch': 10.0}

### Framework versions

- Transformers 4.38.1
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2