File size: 6,889 Bytes
c5c6450
c88bb26
0feafe0
c88bb26
 
 
 
 
 
0feafe0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5c6450
 
c88bb26
 
 
 
 
9d34981
 
 
 
 
c88bb26
 
 
 
 
 
08b1404
c88bb26
 
08b1404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c88bb26
08b1404
 
c88bb26
 
08b1404
 
 
 
c88bb26
 
08b1404
 
 
 
 
 
 
 
 
 
 
 
 
 
c88bb26
 
08b1404
 
 
 
 
 
 
 
0feafe0
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
---
license: apache-2.0
library_name: transformers
tags:
- finetune
- gpt4
- synthetic data
- custom_code
- h2oai
datasets:
- Locutusque/Hercules-v3.0
model-index:
- name: Cypher-Mini-1.8B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 39.59
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aloobun/Cypher-Mini-1.8B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 67.45
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aloobun/Cypher-Mini-1.8B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 31.14
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aloobun/Cypher-Mini-1.8B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 40.44
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aloobun/Cypher-Mini-1.8B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 65.19
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aloobun/Cypher-Mini-1.8B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 14.48
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aloobun/Cypher-Mini-1.8B
      name: Open LLM Leaderboard
---

![Cypher aloobun h2oai1.8B](https://i.imgur.com/2R6f4EX.jpeg)
- This is an experimental model, Finetuned [h2oai/h2o-danube-1.8b-chat](https://huggingface.co/h2oai/h2o-danube-1.8b-chat), on Hercules v3 & private dataset.
- The original idea was to use this 1.8B model, divide the dataset based on task specific capabilities, train models and transform them into a mixture of experts.
- Hyperparameters: adamw with eps of 1e-8, cosine decay w/ 20% warmup, lr=2e-5.

## Format:
```
<|system|></s><|prompt|></s><|answer|>
```

## Benchamrks:

WIP

## Example:
```
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer, StoppingCriteria
import torch

class MyStoppingCriteria(StoppingCriteria):
  def __init__(self, target_sequence, prompt):
    self.target_sequence = target_sequence
    self.prompt=prompt

  def __call__(self, input_ids, scores, **kwargs):
    generated_text = tokenizer.decode(input_ids[0])
    generated_text = generated_text.replace(self.prompt,'')
    if self.target_sequence in generated_text:
        return True 
    return False 

  def __len__(self):
    return 1

  def __iter__(self):
    yield self

modelpath="aloobun/Cypher-Mini-1.8B"

model = AutoModelForCausalLM.from_pretrained(
    modelpath,
    torch_dtype=torch.bfloat16,
    device_map="cuda",
    trust_remote_code=True,       
)

tokenizer = AutoTokenizer.from_pretrained(
    modelpath,
    trust_remote_code=True,      
    use_fast=False,
)

prompt = "<|prompt|>Reflect on a time when you encountered a logical fallacy in an argument. How did you identify it, and what was the consequence?</s><|answer|>"
encoded_input = tokenizer(prompt, return_tensors='pt')
input_ids=encoded_input['input_ids'].cuda()
streamer = TextStreamer(tokenizer=tokenizer, skip_prompt=True)
op = model.generate(
    input_ids,
    streamer=streamer,
    pad_token_id=tokenizer.eos_token_id,
    do_sample=True,
    temperature=0.7,
    top_p=0.8,
    max_new_tokens=512,
    stopping_criteria=MyStoppingCriteria("</s>", prompt)
)
```

## Output:
>I do not have personal experiences or emotions, but I can provide you with an example of a logical fallacy and its consequences:
>
>One common logical fallacy is the appeal to authority fallacy. This occurs when someone argues that a particular opinion or belief is true because of who holds it (i.e., "because the doctor said so"). However, this approach does not take into account other factors that may influence the validity of the claim. For instance, if a doctor says that eating a certain food will cure cancer, it does not necessarily mean that it will work for everyone. Other factors such as genetics, lifestyle, and environmental factors could also play a role in whether or not a person gets cancer.
>
>The consequence of using the appeal to authority fallacy is that it often leads to hasty conclusions and misinformation. It can be difficult to separate fact from fiction, especially when people rely on authority figures to make decisions. As a result, individuals may end up making poor choices based on incomplete information. This can lead to unintended consequences, such as harming oneself or others.
>
>To avoid falling prey to the appeal to authority fallacy, it is important to seek out multiple sources of information and consider all available evidence before making a decision. This can help individuals make more informed choices and reduce the likelihood of being swayed by unsubstantiated claims.</s>

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_aloobun__Cypher-Mini-1.8B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |43.05|
|AI2 Reasoning Challenge (25-Shot)|39.59|
|HellaSwag (10-Shot)              |67.45|
|MMLU (5-Shot)                    |31.14|
|TruthfulQA (0-shot)              |40.44|
|Winogrande (5-shot)              |65.19|
|GSM8k (5-shot)                   |14.48|