File size: 2,866 Bytes
a38ce1f
46400b4
 
a38ce1f
46400b4
 
 
 
 
 
 
39785f4
 
a38ce1f
 
46400b4
0066ec8
755fda8
46400b4
d186533
940be43
46400b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license_name: tongyi-qianwen-research
license_link: https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat/raw/main/LICENSE
library_name: transformers
license: other
tags:
- finetune
- synthetic data
- custom_code
- qwen2
- COT
datasets:
- kaist-ai/CoT-Collection
---

![Reyna aloobun qwen4B](https://i.imgur.com/QfbOY6c.jpeg)
- Finetuned [Qwen/Qwen1.5-4B](https://huggingface.co/Qwen/Qwen1.5-4B), on variety of CoT tasks including Reasoning, Closed Book Question Answering, Ethics, and more.
- Datasets : Curated from - [kaist-ai/CoT-Collection](https://huggingface.co/datasets/kaist-ai/CoT-Collection), [euclaise/TinyCoT](https://huggingface.co/datasets/euclaise/TinyCoT) and a very small subset from [teknium/OpenHermes-2.5](https://huggingface.co/datasets/teknium/OpenHermes-2.5).
- This marks the fourth model in this series. This experiment aims to improve Chain of Thought (CoT) capabilities on smaller language models.
- I may rerun the finetuning experiment(with a more balanced dataset), using an iterative rationale-bootstrapping procedure inspired by euclaise/Memphis-CoT-3B.
- Hyperparameter: adamw with eps of 1e-8, cosine decay with 20% warmup, lr=2e-5

## Benchamrks:

WIP

## Example:
```
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer, StoppingCriteria
import torch

class MyStoppingCriteria(StoppingCriteria):
  def __init__(self, target_sequence, prompt):
    self.target_sequence = target_sequence
    self.prompt=prompt

  def __call__(self, input_ids, scores, **kwargs):
    generated_text = tokenizer.decode(input_ids[0])
    generated_text = generated_text.replace(self.prompt,'')
    if self.target_sequence in generated_text:
        return True 
    return False 

  def __len__(self):
    return 1

  def __iter__(self):
    yield self

modelpath="aloobun/Reyna-CoT-4B-v0.1"

model = AutoModelForCausalLM.from_pretrained(
    modelpath,
    torch_dtype=torch.bfloat16,
    device_map="cuda",
    trust_remote_code=True,       
)

tokenizer = AutoTokenizer.from_pretrained(
    modelpath,
    trust_remote_code=True,      
    use_fast=False,
)

prompt = "Avery opens a flower shop. She ties 8 bunches of flowers with 9 flowers in each bunch. How many bunches would she have if she put 12 flowers in each bunch instead?\n"

encoded_input = tokenizer(prompt, return_tensors='pt')
input_ids=encoded_input['input_ids'].cuda()
streamer = TextStreamer(tokenizer=tokenizer, skip_prompt=True)
op = model.generate(
    input_ids,
    streamer=streamer,
    pad_token_id=tokenizer.eos_token_id,
    do_sample=True,
    temperature=0.6,
    top_p=0.8,
    max_new_tokens=512,
    stopping_criteria=MyStoppingCriteria("<|endoftext|>", prompt)
)

```

## Output:
>She would have 8 x 9 = 72 flowers in total.
>She would have 72 / 12 = 6 bunches of flowers with 12 flowers in each bunch.
>Therefore, the answer is 6.<|endoftext|>