alperenunlu
commited on
Commit
·
5a9845a
1
Parent(s):
1d4a604
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.24 +/- 0.07
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1cf500d5ac23c6bbd4fb8bfaca93ed7bbce816dcae71cbe000537d67df2b476
|
3 |
+
size 106916
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c25acdb17e0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c25acdb4680>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1696117876357493105,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAP3dpPp3Wsbqeq8k+P3dpPp3Wsbqeq8k+QwRqPjOO3j4EuBS+x1IVv2U82j7w1J8+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAiLK8P2HauD8yoIW/zN/JPw1Bvb+nM1y9c68iP0WQmD9teKW/cNC/vtt9cz/0544/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA/d2k+ndaxup6ryT4Q0/s+IBfTu84uwz4/d2k+ndaxup6ryT4Q0/s+IBfTu84uwz5DBGo+M47ePgS4FL6hHXy+eRPZPyU+s7/HUhW/ZTzaPvDUnz65Lxy/Qn7YP3xEaz+UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[ 0.22799395 -0.0013568 0.39388746]\n [ 0.22799395 -0.0013568 0.39388746]\n [ 0.22853188 0.43467864 -0.14523321]\n [-0.58329433 0.42624202 0.31217146]]",
|
34 |
+
"desired_goal": "[[ 1.4741983 1.4441644 -1.0439513 ]\n [ 1.5771422 -1.4785477 -0.0537602 ]\n [ 0.63548964 1.1919028 -1.2927376 ]\n [-0.37463713 0.95113915 1.1164536 ]]",
|
35 |
+
"observation": "[[ 2.2799395e-01 -1.3567988e-03 3.9388746e-01 4.9184465e-01\n -6.4419657e-03 3.8121647e-01]\n [ 2.2799395e-01 -1.3567988e-03 3.9388746e-01 4.9184465e-01\n -6.4419657e-03 3.8121647e-01]\n [ 2.2853188e-01 4.3467864e-01 -1.4523321e-01 -2.4620678e-01\n 1.6959068e+00 -1.4003340e+00]\n [-5.8329433e-01 4.2624202e-01 3.1217146e-01 -6.1010319e-01\n 1.6913531e+00 9.1901374e-01]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzq9XPQSreL1fK7o9jSXpvUMvg7uv3ig+YVUZPgEgGL1/aow9WC+XPUTChLzGGm4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[ 0.05265789 -0.06070997 0.09090304]\n [-0.11384115 -0.00400344 0.16491197]\n [ 0.14973976 -0.0371399 0.0685625 ]\n [ 0.07382077 -0.01620591 0.23252401]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8dbor4Fia2MAWyUSwOMAXSUR0CkmRJ+MIeHdX2UKGgGR7/UX/o7muDBaAdLBGgIR0CkmJRNqQA/dX2UKGgGR7/Gm1IAfdRBaAdLA2gIR0CkmN9Zid8RdX2UKGgGR7/QhOgxrSE2aAdLA2gIR0CkmSG9pRGddX2UKGgGR7/YIkZ75VOsaAdLBGgIR0CkmWHyNGVidX2UKGgGR7/BsZYPoV2zaAdLAmgIR0CkmOf3WWhRdX2UKGgGR7/X2MKkVN5/aAdLBGgIR0CkmKerlvIfdX2UKGgGR7/PTAnDziCKaAdLA2gIR0CkmS6Rp1zRdX2UKGgGR7/AKmbb1yvLaAdLAmgIR0CkmLDVpbljdX2UKGgGR7/QowVTJhfCaAdLA2gIR0CkmXHpSrHVdX2UKGgGR7/MKVII4VASaAdLA2gIR0CkmPgJ1JUYdX2UKGgGR7/DVMmF8G9paAdLAmgIR0CkmToMBp6AdX2UKGgGR7+kcENe+mFbaAdLAWgIR0CkmPxeTmnwdX2UKGgGR7/Ab+cYqG1yaAdLAmgIR0CkmLvbXYlIdX2UKGgGR7/UhFmWdEsraAdLA2gIR0CkmX5TIeYEdX2UKGgGR7/C/hVENOM3aAdLA2gIR0CkmMfOdGy5dX2UKGgGR7+5uP3i704BaAdLAmgIR0CkmYj7yhBadX2UKGgGR7/YQhOgxrSFaAdLBGgIR0CkmU0Jv5xjdX2UKGgGR7/Y57PY4ACGaAdLBGgIR0CkmQ9I5HVgdX2UKGgGR7+jq0MPSUkfaAdLAWgIR0CkmVEw35vcdX2UKGgGR7+YFvAGjbi7aAdLAWgIR0CkmRN03fhudX2UKGgGR7/N/m1YyO7yaAdLA2gIR0CkmNcPOIIodX2UKGgGR7/TbIcR15jZaAdLA2gIR0CkmZWyC4BndX2UKGgGR7+933YcvM8paAdLAmgIR0CkmVmTkhicdX2UKGgGR7+h+pfhMrVfaAdLAWgIR0CkmNs7lq8EdX2UKGgGR7/TwV0tAcDKaAdLA2gIR0CkmR+sHSncdX2UKGgGR7+5xjriVB2PaAdLAmgIR0CkmZ/g75mAdX2UKGgGR7+kWIoE0SAZaAdLAWgIR0CkmSXNs3yadX2UKGgGR7/KF2V3Ux20aAdLA2gIR0CkmWedTYNBdX2UKGgGR7+azeGfwqiHaAdLAWgIR0CkmSn0K7ZndX2UKGgGR7/RJoTPBzmwaAdLA2gIR0CkmOnCoCMhdX2UKGgGR7+ycQRPGhmHaAdLAmgIR0CkmajBMzuXdX2UKGgGR7+2gQHzH0btaAdLAmgIR0CkmbGUGFBZdX2UKGgGR7/OBLf1pTMraAdLA2gIR0CkmTeokzGhdX2UKGgGR7/TzMzMzMzNaAdLBGgIR0CkmXwz+FURdX2UKGgGR7/X5xiobXHzaAdLBGgIR0CkmP4RNATqdX2UKGgGR7+0o7V8Ti84aAdLAmgIR0CkmUK/20zCdX2UKGgGR7/N/b0voNd7aAdLA2gIR0CkmcDXOGCadX2UKGgGR7+0KE384xUOaAdLAmgIR0CkmQZrHlwMdX2UKGgGR7/Uz5GjKxLTaAdLA2gIR0CkmYjpLVWkdX2UKGgGR7/Uhf0EovzwaAdLA2gIR0CkmU7jkuHvdX2UKGgGR7/KIsRQJokBaAdLA2gIR0Ckmc+EAYHgdX2UKGgGR7/LfE4vN/vwaAdLA2gIR0CkmRUWEbo9dX2UKGgGR7/G3G4qgAZLaAdLA2gIR0CkmZhvBJqZdX2UKGgGR7/BfrKNhmXgaAdLAmgIR0CkmVs7uDzzdX2UKGgGR7/QeeFtbcGkaAdLA2gIR0Ckmd3bmEGrdX2UKGgGR7/Tx9oexOclaAdLA2gIR0CkmWgu7HyVdX2UKGgGR7/cTrE9+w1SaAdLBGgIR0CkmSfRu0kXdX2UKGgGR7/T127nPmgbaAdLBGgIR0CkmayfL9uQdX2UKGgGR7/QjX4CZF5OaAdLA2gIR0Ckme0Gmk30dX2UKGgGR7/Bhz/6wdKeaAdLAmgIR0CkmTKCYkVvdX2UKGgGR7/BOerdWQwLaAdLAmgIR0CkmbUIcBEKdX2UKGgGR7/If29L6DXfaAdLA2gIR0CkmXddNWU9dX2UKGgGR7/HjEvTPSlWaAdLA2gIR0CkmfqHO8kEdX2UKGgGR7/GeumrKeTWaAdLA2gIR0CkmT//FR51dX2UKGgGR7/IpTdcjZ+QaAdLA2gIR0CkmcTu4PPLdX2UKGgGR7/YHN5dGAkLaAdLBGgIR0CkmYtPxhDxdX2UKGgGR7+/531SOzY3aAdLAmgIR0CkmUrupjtpdX2UKGgGR7/Xalk6Lfk4aAdLBGgIR0Ckmg2Y4Qz2dX2UKGgGR7/Sin5zo2XLaAdLA2gIR0CkmdFvqC6IdX2UKGgGR7/OTSsr/bTMaAdLA2gIR0CkmZft6X0HdX2UKGgGR7/NKW9lEqlQaAdLA2gIR0CkmVejM3ZPdX2UKGgGR7/USBshxHXmaAdLA2gIR0CkmhyxzJZGdX2UKGgGR7/MaFVT72tdaAdLA2gIR0CkmeCzTnaGdX2UKGgGR7+y3jMmnfl7aAdLAmgIR0CkmWJhvze5dX2UKGgGR7/RrLQokRjCaAdLA2gIR0Ckmab1qWTpdX2UKGgGR7/JtcfNiYsvaAdLA2gIR0Ckmil05lvqdX2UKGgGR7/NT72tdRixaAdLA2gIR0Ckme2M0gr6dX2UKGgGR7/KfGMn7YTTaAdLA2gIR0CkmW9O6/ZedX2UKGgGR7/OpLmITGo8aAdLA2gIR0CkmbZhScbzdX2UKGgGR7+wYvWYnfEXaAdLAmgIR0CkmjSZBsyjdX2UKGgGR7/Cl/H5rP+oaAdLAmgIR0CkmXoRh+fAdX2UKGgGR7/IfGMn7YTTaAdLA2gIR0Ckmfx5LRKIdX2UKGgGR7+8zpHI6r/9aAdLAmgIR0Ckmb7CJoCddX2UKGgGR7+jxy4nWrfcaAdLAWgIR0CkmX5RTCLudX2UKGgGR7+isIVuaWonaAdLAWgIR0CkmgDE3sHCdX2UKGgGR7+Zlar3j+72aAdLAWgIR0CkmcMEaESNdX2UKGgGR7+4q8UVSGahaAdLAmgIR0CkmYaxHG0edX2UKGgGR7/YEKmbb1yvaAdLBGgIR0Ckmkeu/1xsdX2UKGgGR7/UDCP6sQumaAdLA2gIR0Ckmg9V/+bWdX2UKGgGR7/SqkuYhMakaAdLBGgIR0CkmdVUVBUrdX2UKGgGR7/OZuyeI2wWaAdLA2gIR0CkmZTlT3qSdX2UKGgGR7/TM2FWXC0oaAdLA2gIR0CkmlPB7/n4dX2UKGgGR7/AGJN0vGp/aAdLAmgIR0Ckmd4PwuuidX2UKGgGR7+4CfYjB2wFaAdLAmgIR0Ckml7el9BsdX2UKGgGR7/OEcKgIyCWaAdLA2gIR0CkmaS9ugpSdX2UKGgGR7/jnY6GQCCBaAdLBWgIR0CkmifVI7NjdX2UKGgGR7/A0x/NJOFhaAdLAmgIR0CkmmgxJul5dX2UKGgGR7/LFyaNMoMKaAdLA2gIR0Ckme5HNHH4dX2UKGgGR7/CHs1KoQ4CaAdLAmgIR0CkmjBguyu7dX2UKGgGR7/QocrAgxJvaAdLA2gIR0CkmbIvi97GdX2UKGgGR7/L+pfhMrVfaAdLA2gIR0CkmneumrKedX2UKGgGR7/OOq//NqxkaAdLA2gIR0Ckmf3BguyvdX2UKGgGR7/NgYP5HmRvaAdLA2gIR0CkmkAwXZXddX2UKGgGR7/SAO8TSLIgaAdLA2gIR0CkmcIAn2IwdX2UKGgGR7++DvmYBvJjaAdLAmgIR0CkmoDRUm2LdX2UKGgGR7/I+yquKXOXaAdLA2gIR0Ckmgqd6LOzdX2UKGgGR7+0pON5t3wDaAdLAmgIR0CkmcoyCWeIdX2UKGgGR7+9dMTN+so2aAdLAmgIR0CkmokBjnV5dX2UKGgGR7/NV+7UXpGGaAdLA2gIR0Ckmkztb9qDdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:239592569bc9e6ddacc0577f08d8a409ccd4e3d46d6b903a28dd890771146c95
|
3 |
+
size 44734
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:57db3be8d5d9886ab2511778af37553cc9cb0478ce27dbe494889663eafd018e
|
3 |
+
size 46014
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c25acdb17e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c25acdb4680>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696117876357493105, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAP3dpPp3Wsbqeq8k+P3dpPp3Wsbqeq8k+QwRqPjOO3j4EuBS+x1IVv2U82j7w1J8+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAiLK8P2HauD8yoIW/zN/JPw1Bvb+nM1y9c68iP0WQmD9teKW/cNC/vtt9cz/0544/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA/d2k+ndaxup6ryT4Q0/s+IBfTu84uwz4/d2k+ndaxup6ryT4Q0/s+IBfTu84uwz5DBGo+M47ePgS4FL6hHXy+eRPZPyU+s7/HUhW/ZTzaPvDUnz65Lxy/Qn7YP3xEaz+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.22799395 -0.0013568 0.39388746]\n [ 0.22799395 -0.0013568 0.39388746]\n [ 0.22853188 0.43467864 -0.14523321]\n [-0.58329433 0.42624202 0.31217146]]", "desired_goal": "[[ 1.4741983 1.4441644 -1.0439513 ]\n [ 1.5771422 -1.4785477 -0.0537602 ]\n [ 0.63548964 1.1919028 -1.2927376 ]\n [-0.37463713 0.95113915 1.1164536 ]]", "observation": "[[ 2.2799395e-01 -1.3567988e-03 3.9388746e-01 4.9184465e-01\n -6.4419657e-03 3.8121647e-01]\n [ 2.2799395e-01 -1.3567988e-03 3.9388746e-01 4.9184465e-01\n -6.4419657e-03 3.8121647e-01]\n [ 2.2853188e-01 4.3467864e-01 -1.4523321e-01 -2.4620678e-01\n 1.6959068e+00 -1.4003340e+00]\n [-5.8329433e-01 4.2624202e-01 3.1217146e-01 -6.1010319e-01\n 1.6913531e+00 9.1901374e-01]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzq9XPQSreL1fK7o9jSXpvUMvg7uv3ig+YVUZPgEgGL1/aow9WC+XPUTChLzGGm4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.05265789 -0.06070997 0.09090304]\n [-0.11384115 -0.00400344 0.16491197]\n [ 0.14973976 -0.0371399 0.0685625 ]\n [ 0.07382077 -0.01620591 0.23252401]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8dbor4Fia2MAWyUSwOMAXSUR0CkmRJ+MIeHdX2UKGgGR7/UX/o7muDBaAdLBGgIR0CkmJRNqQA/dX2UKGgGR7/Gm1IAfdRBaAdLA2gIR0CkmN9Zid8RdX2UKGgGR7/QhOgxrSE2aAdLA2gIR0CkmSG9pRGddX2UKGgGR7/YIkZ75VOsaAdLBGgIR0CkmWHyNGVidX2UKGgGR7/BsZYPoV2zaAdLAmgIR0CkmOf3WWhRdX2UKGgGR7/X2MKkVN5/aAdLBGgIR0CkmKerlvIfdX2UKGgGR7/PTAnDziCKaAdLA2gIR0CkmS6Rp1zRdX2UKGgGR7/AKmbb1yvLaAdLAmgIR0CkmLDVpbljdX2UKGgGR7/QowVTJhfCaAdLA2gIR0CkmXHpSrHVdX2UKGgGR7/MKVII4VASaAdLA2gIR0CkmPgJ1JUYdX2UKGgGR7/DVMmF8G9paAdLAmgIR0CkmToMBp6AdX2UKGgGR7+kcENe+mFbaAdLAWgIR0CkmPxeTmnwdX2UKGgGR7/Ab+cYqG1yaAdLAmgIR0CkmLvbXYlIdX2UKGgGR7/UhFmWdEsraAdLA2gIR0CkmX5TIeYEdX2UKGgGR7/C/hVENOM3aAdLA2gIR0CkmMfOdGy5dX2UKGgGR7+5uP3i704BaAdLAmgIR0CkmYj7yhBadX2UKGgGR7/YQhOgxrSFaAdLBGgIR0CkmU0Jv5xjdX2UKGgGR7/Y57PY4ACGaAdLBGgIR0CkmQ9I5HVgdX2UKGgGR7+jq0MPSUkfaAdLAWgIR0CkmVEw35vcdX2UKGgGR7+YFvAGjbi7aAdLAWgIR0CkmRN03fhudX2UKGgGR7/N/m1YyO7yaAdLA2gIR0CkmNcPOIIodX2UKGgGR7/TbIcR15jZaAdLA2gIR0CkmZWyC4BndX2UKGgGR7+933YcvM8paAdLAmgIR0CkmVmTkhicdX2UKGgGR7+h+pfhMrVfaAdLAWgIR0CkmNs7lq8EdX2UKGgGR7/TwV0tAcDKaAdLA2gIR0CkmR+sHSncdX2UKGgGR7+5xjriVB2PaAdLAmgIR0CkmZ/g75mAdX2UKGgGR7+kWIoE0SAZaAdLAWgIR0CkmSXNs3yadX2UKGgGR7/KF2V3Ux20aAdLA2gIR0CkmWedTYNBdX2UKGgGR7+azeGfwqiHaAdLAWgIR0CkmSn0K7ZndX2UKGgGR7/RJoTPBzmwaAdLA2gIR0CkmOnCoCMhdX2UKGgGR7+ycQRPGhmHaAdLAmgIR0CkmajBMzuXdX2UKGgGR7+2gQHzH0btaAdLAmgIR0CkmbGUGFBZdX2UKGgGR7/OBLf1pTMraAdLA2gIR0CkmTeokzGhdX2UKGgGR7/TzMzMzMzNaAdLBGgIR0CkmXwz+FURdX2UKGgGR7/X5xiobXHzaAdLBGgIR0CkmP4RNATqdX2UKGgGR7+0o7V8Ti84aAdLAmgIR0CkmUK/20zCdX2UKGgGR7/N/b0voNd7aAdLA2gIR0CkmcDXOGCadX2UKGgGR7+0KE384xUOaAdLAmgIR0CkmQZrHlwMdX2UKGgGR7/Uz5GjKxLTaAdLA2gIR0CkmYjpLVWkdX2UKGgGR7/Uhf0EovzwaAdLA2gIR0CkmU7jkuHvdX2UKGgGR7/KIsRQJokBaAdLA2gIR0Ckmc+EAYHgdX2UKGgGR7/LfE4vN/vwaAdLA2gIR0CkmRUWEbo9dX2UKGgGR7/G3G4qgAZLaAdLA2gIR0CkmZhvBJqZdX2UKGgGR7/BfrKNhmXgaAdLAmgIR0CkmVs7uDzzdX2UKGgGR7/QeeFtbcGkaAdLA2gIR0Ckmd3bmEGrdX2UKGgGR7/Tx9oexOclaAdLA2gIR0CkmWgu7HyVdX2UKGgGR7/cTrE9+w1SaAdLBGgIR0CkmSfRu0kXdX2UKGgGR7/T127nPmgbaAdLBGgIR0CkmayfL9uQdX2UKGgGR7/QjX4CZF5OaAdLA2gIR0Ckme0Gmk30dX2UKGgGR7/Bhz/6wdKeaAdLAmgIR0CkmTKCYkVvdX2UKGgGR7/BOerdWQwLaAdLAmgIR0CkmbUIcBEKdX2UKGgGR7/If29L6DXfaAdLA2gIR0CkmXddNWU9dX2UKGgGR7/HjEvTPSlWaAdLA2gIR0CkmfqHO8kEdX2UKGgGR7/GeumrKeTWaAdLA2gIR0CkmT//FR51dX2UKGgGR7/IpTdcjZ+QaAdLA2gIR0CkmcTu4PPLdX2UKGgGR7/YHN5dGAkLaAdLBGgIR0CkmYtPxhDxdX2UKGgGR7+/531SOzY3aAdLAmgIR0CkmUrupjtpdX2UKGgGR7/Xalk6Lfk4aAdLBGgIR0Ckmg2Y4Qz2dX2UKGgGR7/Sin5zo2XLaAdLA2gIR0CkmdFvqC6IdX2UKGgGR7/OTSsr/bTMaAdLA2gIR0CkmZft6X0HdX2UKGgGR7/NKW9lEqlQaAdLA2gIR0CkmVejM3ZPdX2UKGgGR7/USBshxHXmaAdLA2gIR0CkmhyxzJZGdX2UKGgGR7/MaFVT72tdaAdLA2gIR0CkmeCzTnaGdX2UKGgGR7+y3jMmnfl7aAdLAmgIR0CkmWJhvze5dX2UKGgGR7/RrLQokRjCaAdLA2gIR0Ckmab1qWTpdX2UKGgGR7/JtcfNiYsvaAdLA2gIR0Ckmil05lvqdX2UKGgGR7/NT72tdRixaAdLA2gIR0Ckme2M0gr6dX2UKGgGR7/KfGMn7YTTaAdLA2gIR0CkmW9O6/ZedX2UKGgGR7/OpLmITGo8aAdLA2gIR0CkmbZhScbzdX2UKGgGR7+wYvWYnfEXaAdLAmgIR0CkmjSZBsyjdX2UKGgGR7/Cl/H5rP+oaAdLAmgIR0CkmXoRh+fAdX2UKGgGR7/IfGMn7YTTaAdLA2gIR0Ckmfx5LRKIdX2UKGgGR7+8zpHI6r/9aAdLAmgIR0Ckmb7CJoCddX2UKGgGR7+jxy4nWrfcaAdLAWgIR0CkmX5RTCLudX2UKGgGR7+isIVuaWonaAdLAWgIR0CkmgDE3sHCdX2UKGgGR7+Zlar3j+72aAdLAWgIR0CkmcMEaESNdX2UKGgGR7+4q8UVSGahaAdLAmgIR0CkmYaxHG0edX2UKGgGR7/YEKmbb1yvaAdLBGgIR0Ckmkeu/1xsdX2UKGgGR7/UDCP6sQumaAdLA2gIR0Ckmg9V/+bWdX2UKGgGR7/SqkuYhMakaAdLBGgIR0CkmdVUVBUrdX2UKGgGR7/OZuyeI2wWaAdLA2gIR0CkmZTlT3qSdX2UKGgGR7/TM2FWXC0oaAdLA2gIR0CkmlPB7/n4dX2UKGgGR7/AGJN0vGp/aAdLAmgIR0Ckmd4PwuuidX2UKGgGR7+4CfYjB2wFaAdLAmgIR0Ckml7el9BsdX2UKGgGR7/OEcKgIyCWaAdLA2gIR0CkmaS9ugpSdX2UKGgGR7/jnY6GQCCBaAdLBWgIR0CkmifVI7NjdX2UKGgGR7/A0x/NJOFhaAdLAmgIR0CkmmgxJul5dX2UKGgGR7/LFyaNMoMKaAdLA2gIR0Ckme5HNHH4dX2UKGgGR7/CHs1KoQ4CaAdLAmgIR0CkmjBguyu7dX2UKGgGR7/QocrAgxJvaAdLA2gIR0CkmbIvi97GdX2UKGgGR7/L+pfhMrVfaAdLA2gIR0CkmneumrKedX2UKGgGR7/OOq//NqxkaAdLA2gIR0Ckmf3BguyvdX2UKGgGR7/NgYP5HmRvaAdLA2gIR0CkmkAwXZXddX2UKGgGR7/SAO8TSLIgaAdLA2gIR0CkmcIAn2IwdX2UKGgGR7++DvmYBvJjaAdLAmgIR0CkmoDRUm2LdX2UKGgGR7/I+yquKXOXaAdLA2gIR0Ckmgqd6LOzdX2UKGgGR7+0pON5t3wDaAdLAmgIR0CkmcoyCWeIdX2UKGgGR7+9dMTN+so2aAdLAmgIR0CkmokBjnV5dX2UKGgGR7/NV+7UXpGGaAdLA2gIR0Ckmkztb9qDdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (667 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.24069423293694853, "std_reward": 0.07319742104419927, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-01T00:41:25.976442"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6a68b82710c90e962e17b3a6c1388ce241d4f75bfb07e1fdc20207928e2dbad
|
3 |
+
size 2623
|