File size: 41,307 Bytes
9117268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
---
base_model: sentence-transformers/stsb-distilbert-base
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:622302
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Does fTO Genotype interact with Improvement in Aerobic Fitness
    on Body Weight Loss During Lifestyle Intervention?
  sentences:
  - The study population count 46550 male workers, 1670 (3.6%) of whom incurred at
    least one work-related injury requiring admission to hospital within a period
    of 5years following hearing tests conducted between 1987 and 2005. The noise
    exposure and hearing loss-related data were gathered during occupational noise-induced
    hearing loss (NIHL) screening. The hospital data were used to identify all members
    of the study population who were admitted, and the reason for admission. Finally,
    access to the death-related data made it possible to identify participants who
    died during the course of the study. Cox proportional hazards model taking into
    account hearing status, noise levels, age and cumulative duration of noise exposure
    at the time of the hearing test established the risk of work-related injuries
    leading to admission to hospital.
  - Carriers of a hereditary mutation in BRCA are at high risk for breast and ovarian
    cancer. The first person from a family known to carry the mutation, the index
    person, has to share genetic information with relatives. This study is aimed at
    determining the number of relatives tested for a BRCA mutation, and the exploration
    of facilitating and debilitating factors in the transmission of genetic information
    from index patient to relatives.
  - Not every participant responds with a comparable body weight loss to lifestyle
    intervention, despite the same compliance. Genetic factors may explain parts of
    this difference. Variation in fat mass and obesity-associated gene (FTO) is the
    strongest common genetic determinant of body weight. The aim of the present study
    was to evaluate the impact of FTO genotype differences in the link between improvement
    of fitness and reduction of body weight during a lifestyle intervention.
- source_sentence: Is family history of exceptional longevity associated with lower
    serum uric acid levels in Ashkenazi Jews?
  sentences:
  - To evaluate the effect of fasting on gastric emptying in mice.
  - To test whether lower serum uric acid (UA) levels are associated with longevity
    independent of renal function.
  - Inducible NOS mRNA expression was significantly lower in CF patients with and
    without bacterial infection than in healthy children (0.22 and 0.23 v 0.76; p=0.002
    and p=0.01, respectively). Low levels of iNOS gene expression were accompanied
    by low levels of iNOS protein expression as detected by Western blot analysis.
- source_sentence: Do hepatocellular carcinomas compromise quantitative tests of liver
    function?
  sentences:
  - MEPE had no effect on glomerular filtration rate or single-nephron filtration
    rate, but it increased phosphate excretion significantly. In animals infused with
    vehicle alone (time controls), no significant change was seen in either the proximal
    tubular fluid:plasma phosphate concentration ratio (TF/P(Pi)) or the fraction
    of filtered phosphate reaching the late proximal convoluted tubule (FD(Pi)); whereas
    in rats infused with MEPE, TF/P(Pi) increased from 0.49 ± 0.07 to 0.68 ± 0.04
    (n = 22; P = 0.01) and FD(Pi) increased from 0.20 ± 0.03 to 0.33 ± 0.03 (n = 22;
    P < 0.01).
  - Hepatocellular carcinoma, which usually develops in cirrhotic livers, is one of
    the most frequent cancers worldwide. If and how far hepatoma growth influences
    liver function is unclear. Therefore, we compared a broad panel of quantitative
    tests of liver function in cirrhotic patients with and without hepatocellular
    carcinoma.
  - A study was undertaken to measure cough frequency in children with stable asthma
    using a validated monitoring device, and to assess the correlation between cough
    frequency and the degree and type of airway inflammation.
- source_sentence: Does hand-assisted laparoscopic digestive surgery provide safety
    and tactile sensation for malignancy or obesity?
  sentences:
  - In human aortic endothelial cells (HAECs) exposed to high glucose and aortas of
    diabetic mice, activation of p66(Shc) by protein kinase C βII (PKCβII) persisted
    after returning to normoglycemia. Persistent p66(Shc) upregulation and mitochondrial
    translocation were associated with continued reactive oxygen species (ROS) production,
    reduced nitric oxide bioavailability, and apoptosis. We show that p66(Shc) gene
    overexpression was epigenetically regulated by promoter CpG hypomethylation and
    general control nonderepressible 5-induced histone 3 acetylation. Furthermore,
    p66(Shc)-derived ROS production maintained PKCβII upregulation and PKCβII-dependent
    inhibitory phosphorylation of endothelial nitric oxide synthase at Thr-495, leading
    to a detrimental vicious cycle despite restoration of normoglycemia. Moreover,
    p66(Shc) activation accounted for the persistent elevation of the advanced glycated
    end product precursor methylglyoxal. In vitro and in vivo gene silencing of p66(Shc),
    performed at the time of glucose normalization, blunted ROS production, restored
    endothelium-dependent vasorelaxation, and attenuated apoptosis by limiting cytochrome
    c release, caspase 3 activity, and cleavage of poly (ADP-ribose) polymerase.
  - Recently, 13 of our patients underwent hand-assisted advanced laparoscopic surgery
    using this device. In this series, we had two cases of gastrectomy, two cases
    of gastric bypass for morbid obesity, two Whipple cases for periampullary tumor,
    and seven cases of bowel resection. On the basis of this series, we were able
    to assess the utility of this device.
  - 'Healthy men and women (n = 13; age: 48 +/- 17 y) were studied on 2 occasions:
    after > or = 48 h with no exercise and 17 h after a 60-min bout of endurance exercise.
    During each trial, brachial artery flow mediated dilation (FMD) was used to assess
    endothelial function before and after the ingestion of a candy bar and soft drink.
    Glucose, insulin, and thiobarbituric acid-reactive substances (TBARS), a marker
    of oxidative stress, were measured in blood obtained during each FMD measurement.
    The insulin sensitivity index was calculated from the glucose and insulin data.'
- source_sentence: Do correlations between plasma-neuropeptides and temperament dimensions
    differ between suicidal patients and healthy controls?
  sentences:
  - Decreased plasma levels of plasma-neuropeptide Y (NPY) and plasma-corticotropin
    releasing hormone (CRH), and increased levels of plasma delta-sleep inducing peptide
    (DSIP) in suicide attempters with mood disorders have previously been observed.
    This study was performed in order to further understand the clinical relevance
    of these findings.
  - Brain death was induced in Wistar rats by intracranial balloon inflation. Pulmonary
    capillary leak was estimated using radioiodinated albumin. Development of pulmonary
    edema was assessed by measurement of wet and dry lung weights. Cell surface expression
    of CD11b/CD18 by neutrophils was determined using flow cytometry. Enzyme-linked
    immunosorbent assays were used to measure the levels of TNFalpha, IL-1beta, CINC-1,
    and CINC-3 in serum and bronchoalveolar lavage. Quantitative reverse-transcription
    polymerase chain reaction was used to determine the expression of cytokine mRNA
    (IL-1beta, CINC-1 and CINC-3) in lung tissue.
  - 'Seven hundred fifty patients entered the study. One hundred sixty-eight patients
    (22.4%) presented with a total of 193 extracutaneous manifestations, as follows:
    articular (47.2%), neurologic (17.1%), vascular (9.3%), ocular (8.3%), gastrointestinal
    (6.2%), respiratory (2.6%), cardiac (1%), and renal (1%). Other autoimmune conditions
    were present in 7.3% of patients. Neurologic involvement consisted of epilepsy,
    central nervous system vasculitis, peripheral neuropathy, vascular malformations,
    headache, and neuroimaging abnormalities. Ocular manifestations were episcleritis,
    uveitis, xerophthalmia, glaucoma, and papilledema. In more than one-fourth of
    these children, articular, neurologic, and ocular involvements were unrelated
    to the site of skin lesions. Raynaud''s phenomenon was reported in 16 patients.
    Respiratory involvement consisted essentially of restrictive lung disease. Gastrointestinal
    involvement was reported in 12 patients and consisted exclusively of gastroesophageal
    reflux. Thirty patients (4%) had multiple extracutaneous features, but systemic
    sclerosis (SSc) developed in only 1 patient. In patients with extracutaneous involvement,
    the prevalence of antinuclear antibodies and rheumatoid factor was significantly
    higher than that among patients with only skin involvement. However, Scl-70 and
    anticentromere, markers of SSc, were not significantly increased.'
model-index:
- name: SentenceTransformer based on sentence-transformers/stsb-distilbert-base
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: med eval dev
      type: med-eval-dev
    metrics:
    - type: cosine_accuracy@1
      value: 0.9825
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.998
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9985
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9985
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.9825
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.8438333333333332
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.5588
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.29309999999999997
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.3413382936507936
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8453946428571428
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9191847222222223
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9578416666666667
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9461928701093355
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.9899583333333333
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9168772609607218
      name: Cosine Map@100
    - type: dot_accuracy@1
      value: 0.9705
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.9955
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.9985
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.999
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.9705
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.8141666666666666
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.546
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.28995
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.3365662698412698
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.8156482142857142
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.8994174603174604
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.9480904761904763
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.9297315742366127
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.9828083333333333
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.8926507948277561
      name: Dot Map@100
---

# SentenceTransformer based on sentence-transformers/stsb-distilbert-base

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/stsb-distilbert-base](https://huggingface.co/sentence-transformers/stsb-distilbert-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/stsb-distilbert-base](https://huggingface.co/sentence-transformers/stsb-distilbert-base) <!-- at revision 82ad392c08f81be9be9bf065339670b23f2e1493 -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("alpha-brain/pubmed-stsb-distilbert-base-mnrl")
# Run inference
sentences = [
    'Do correlations between plasma-neuropeptides and temperament dimensions differ between suicidal patients and healthy controls?',
    'Decreased plasma levels of plasma-neuropeptide Y (NPY) and plasma-corticotropin releasing hormone (CRH), and increased levels of plasma delta-sleep inducing peptide (DSIP) in suicide attempters with mood disorders have previously been observed. This study was performed in order to further understand the clinical relevance of these findings.',
    "Seven hundred fifty patients entered the study. One hundred sixty-eight patients (22.4%) presented with a total of 193 extracutaneous manifestations, as follows: articular (47.2%), neurologic (17.1%), vascular (9.3%), ocular (8.3%), gastrointestinal (6.2%), respiratory (2.6%), cardiac (1%), and renal (1%). Other autoimmune conditions were present in 7.3% of patients. Neurologic involvement consisted of epilepsy, central nervous system vasculitis, peripheral neuropathy, vascular malformations, headache, and neuroimaging abnormalities. Ocular manifestations were episcleritis, uveitis, xerophthalmia, glaucoma, and papilledema. In more than one-fourth of these children, articular, neurologic, and ocular involvements were unrelated to the site of skin lesions. Raynaud's phenomenon was reported in 16 patients. Respiratory involvement consisted essentially of restrictive lung disease. Gastrointestinal involvement was reported in 12 patients and consisted exclusively of gastroesophageal reflux. Thirty patients (4%) had multiple extracutaneous features, but systemic sclerosis (SSc) developed in only 1 patient. In patients with extracutaneous involvement, the prevalence of antinuclear antibodies and rheumatoid factor was significantly higher than that among patients with only skin involvement. However, Scl-70 and anticentromere, markers of SSc, were not significantly increased.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `med-eval-dev`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.9825     |
| cosine_accuracy@3   | 0.998      |
| cosine_accuracy@5   | 0.9985     |
| cosine_accuracy@10  | 0.9985     |
| cosine_precision@1  | 0.9825     |
| cosine_precision@3  | 0.8438     |
| cosine_precision@5  | 0.5588     |
| cosine_precision@10 | 0.2931     |
| cosine_recall@1     | 0.3413     |
| cosine_recall@3     | 0.8454     |
| cosine_recall@5     | 0.9192     |
| cosine_recall@10    | 0.9578     |
| cosine_ndcg@10      | 0.9462     |
| cosine_mrr@10       | 0.99       |
| **cosine_map@100**  | **0.9169** |
| dot_accuracy@1      | 0.9705     |
| dot_accuracy@3      | 0.9955     |
| dot_accuracy@5      | 0.9985     |
| dot_accuracy@10     | 0.999      |
| dot_precision@1     | 0.9705     |
| dot_precision@3     | 0.8142     |
| dot_precision@5     | 0.546      |
| dot_precision@10    | 0.2899     |
| dot_recall@1        | 0.3366     |
| dot_recall@3        | 0.8156     |
| dot_recall@5        | 0.8994     |
| dot_recall@10       | 0.9481     |
| dot_ndcg@10         | 0.9297     |
| dot_mrr@10          | 0.9828     |
| dot_map@100         | 0.8927     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 622,302 training samples
* Columns: <code>question</code> and <code>contexts</code>
* Approximate statistics based on the first 1000 samples:
  |         | question                                                                          | contexts                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 9 tokens</li><li>mean: 27.35 tokens</li><li>max: 60 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 88.52 tokens</li><li>max: 128 tokens</li></ul> |
* Samples:
  | question                                                                                                                                                                  | contexts                                                                                                                                                                                                                                                          |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Does low-level human equivalent gestational lead exposure produce sex-specific motor and coordination abnormalities and late-onset obesity in year-old mice?</code> | <code>Low-level developmental lead exposure is linked to cognitive and neurological disorders in children. However, the long-term effects of gestational lead exposure (GLE) have received little attention.</code>                                               |
  | <code>Does insulin in combination with selenium inhibit HG/Pal-induced cardiomyocyte apoptosis by Cbl-b regulating p38MAPK/CBP/Ku70 pathway?</code>                       | <code>In this study, we investigated whether insulin and selenium in combination (In/Se) suppresses cardiomyocyte apoptosis and whether this protection is mediated by Cbl-b regulating p38MAPK/CBP/Ku70 pathway.</code>                                          |
  | <code>Does arthroscopic subacromial decompression result in normal shoulder function after two years in less than 50 % of patients?</code>                                | <code>The aim of this study was to evaluate the outcome two years after arthroscopic subacromial decompression using the Western Ontario Rotator-Cuff (WORC) index and a diagram-based questionnaire to self-assess active shoulder range of motion (ROM).</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Evaluation Dataset

#### Unnamed Dataset


* Size: 32,753 evaluation samples
* Columns: <code>question</code> and <code>contexts</code>
* Approximate statistics based on the first 1000 samples:
  |         | question                                                                           | contexts                                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 11 tokens</li><li>mean: 27.52 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 88.59 tokens</li><li>max: 128 tokens</li></ul> |
* Samples:
  | question                                                                                                                                                       | contexts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Does [ Chemical components from essential oil of Pandanus amaryllifolius leave ]?</code>                                                                 | <code>The essential oil of Pandanus amaryllifolius leaves was analyzed by gas chromatography-mass spectrum, and the relative content of each component was determined by area normalization method.</code>                                                                                                                                                                                                                                                                                                                                                                                                    |
  | <code>Is elevated C-reactive protein associated with the tumor depth of invasion but not with disease recurrence in stage II and III colorectal cancer?</code> | <code>We previously demonstrated that elevated serum C-reactive protein (CRP) level is associated with depth of tumor invasion in operable colorectal cancer. There is also increasing evidence to show that raised CRP concentration is associated with poor survival in patients with colorectal cancer. The purpose of this study was to investigate the correlation between preoperative CRP concentrations and short-term disease recurrence in cases with stage II and III colorectal cancer.</code>                                                                                                    |
  | <code>Do neuropeptide Y and peptide YY protect from weight loss caused by Bacille Calmette-Guérin in mice?</code>                                              | <code>Deletion of PYY and NPY aggravated the BCG-induced loss of body weight, which was most pronounced in NPY-/-;PYY-/- mice (maximum loss: 15%). The weight loss in NPY-/-;PYY-/- mice did not normalize during the 2 week observation period. BCG suppressed the circadian pattern of locomotion, exploration and food intake. However, these changes took a different time course than the prolonged weight loss caused by BCG in NPY-/-;PYY-/- mice. The effect of BCG to increase circulating IL-6 (measured 16 days post-treatment) remained unaltered by knockout of PYY, NPY or NPY plus PYY.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `num_train_epochs`: 1

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch  | Step | Training Loss | loss   | med-eval-dev_cosine_map@100 |
|:------:|:----:|:-------------:|:------:|:---------------------------:|
| 0      | 0    | -             | -      | 0.3328                      |
| 0.0103 | 100  | 0.7953        | -      | -                           |
| 0.0206 | 200  | 0.5536        | -      | -                           |
| 0.0257 | 250  | -             | 0.1041 | 0.7474                      |
| 0.0309 | 300  | 0.4755        | -      | -                           |
| 0.0411 | 400  | 0.4464        | -      | -                           |
| 0.0514 | 500  | 0.3986        | 0.0761 | 0.7786                      |
| 0.0617 | 600  | 0.357         | -      | -                           |
| 0.0720 | 700  | 0.3519        | -      | -                           |
| 0.0771 | 750  | -             | 0.0685 | 0.8029                      |
| 0.0823 | 800  | 0.3197        | -      | -                           |
| 0.0926 | 900  | 0.3247        | -      | -                           |
| 0.1028 | 1000 | 0.3048        | 0.0549 | 0.8108                      |
| 0.1131 | 1100 | 0.2904        | -      | -                           |
| 0.1234 | 1200 | 0.281         | -      | -                           |
| 0.1285 | 1250 | -             | 0.0503 | 0.8181                      |
| 0.1337 | 1300 | 0.2673        | -      | -                           |
| 0.1440 | 1400 | 0.2645        | -      | -                           |
| 0.1543 | 1500 | 0.2511        | 0.0457 | 0.8332                      |
| 0.1645 | 1600 | 0.2541        | -      | -                           |
| 0.1748 | 1700 | 0.2614        | -      | -                           |
| 0.1800 | 1750 | -             | 0.0401 | 0.8380                      |
| 0.1851 | 1800 | 0.2263        | -      | -                           |
| 0.1954 | 1900 | 0.2466        | -      | -                           |
| 0.2057 | 2000 | 0.2297        | 0.0365 | 0.8421                      |
| 0.2160 | 2100 | 0.2225        | -      | -                           |
| 0.2262 | 2200 | 0.212         | -      | -                           |
| 0.2314 | 2250 | -             | 0.0344 | 0.8563                      |
| 0.2365 | 2300 | 0.2257        | -      | -                           |
| 0.2468 | 2400 | 0.1953        | -      | -                           |
| 0.2571 | 2500 | 0.1961        | 0.0348 | 0.8578                      |
| 0.2674 | 2600 | 0.1888        | -      | -                           |
| 0.2777 | 2700 | 0.2039        | -      | -                           |
| 0.2828 | 2750 | -             | 0.0319 | 0.8610                      |
| 0.2879 | 2800 | 0.1939        | -      | -                           |
| 0.2982 | 2900 | 0.202         | -      | -                           |
| 0.3085 | 3000 | 0.1915        | 0.0292 | 0.8678                      |
| 0.3188 | 3100 | 0.1987        | -      | -                           |
| 0.3291 | 3200 | 0.1877        | -      | -                           |
| 0.3342 | 3250 | -             | 0.0275 | 0.8701                      |
| 0.3394 | 3300 | 0.1874        | -      | -                           |
| 0.3497 | 3400 | 0.1689        | -      | -                           |
| 0.3599 | 3500 | 0.169         | 0.0281 | 0.8789                      |
| 0.3702 | 3600 | 0.1631        | -      | -                           |
| 0.3805 | 3700 | 0.1611        | -      | -                           |
| 0.3856 | 3750 | -             | 0.0263 | 0.8814                      |
| 0.3908 | 3800 | 0.1764        | -      | -                           |
| 0.4011 | 3900 | 0.1796        | -      | -                           |
| 0.4114 | 4000 | 0.1729        | 0.0249 | 0.8805                      |
| 0.4216 | 4100 | 0.1551        | -      | -                           |
| 0.4319 | 4200 | 0.1543        | -      | -                           |
| 0.4371 | 4250 | -             | 0.0241 | 0.8867                      |
| 0.4422 | 4300 | 0.1549        | -      | -                           |
| 0.4525 | 4400 | 0.1432        | -      | -                           |
| 0.4628 | 4500 | 0.1592        | 0.0219 | 0.8835                      |
| 0.4731 | 4600 | 0.1517        | -      | -                           |
| 0.4833 | 4700 | 0.1463        | -      | -                           |
| 0.4885 | 4750 | -             | 0.0228 | 0.8928                      |
| 0.4936 | 4800 | 0.1525        | -      | -                           |
| 0.5039 | 4900 | 0.1426        | -      | -                           |
| 0.5142 | 5000 | 0.1524        | 0.0209 | 0.8903                      |
| 0.5245 | 5100 | 0.1443        | -      | -                           |
| 0.5348 | 5200 | 0.1468        | -      | -                           |
| 0.5399 | 5250 | -             | 0.0212 | 0.8948                      |
| 0.5450 | 5300 | 0.151         | -      | -                           |
| 0.5553 | 5400 | 0.1443        | -      | -                           |
| 0.5656 | 5500 | 0.1438        | 0.0212 | 0.8982                      |
| 0.5759 | 5600 | 0.1409        | -      | -                           |
| 0.5862 | 5700 | 0.1346        | -      | -                           |
| 0.5913 | 5750 | -             | 0.0207 | 0.8983                      |
| 0.5965 | 5800 | 0.1315        | -      | -                           |
| 0.6067 | 5900 | 0.1425        | -      | -                           |
| 0.6170 | 6000 | 0.136         | 0.0188 | 0.8970                      |
| 0.6273 | 6100 | 0.1426        | -      | -                           |
| 0.6376 | 6200 | 0.1353        | -      | -                           |
| 0.6427 | 6250 | -             | 0.0185 | 0.8969                      |
| 0.6479 | 6300 | 0.1269        | -      | -                           |
| 0.6582 | 6400 | 0.1159        | -      | -                           |
| 0.6684 | 6500 | 0.1311        | 0.0184 | 0.9028                      |
| 0.6787 | 6600 | 0.1179        | -      | -                           |
| 0.6890 | 6700 | 0.115         | -      | -                           |
| 0.6942 | 6750 | -             | 0.0184 | 0.9046                      |
| 0.6993 | 6800 | 0.1254        | -      | -                           |
| 0.7096 | 6900 | 0.1233        | -      | -                           |
| 0.7199 | 7000 | 0.122         | 0.0174 | 0.9042                      |
| 0.7302 | 7100 | 0.1238        | -      | -                           |
| 0.7404 | 7200 | 0.1257        | -      | -                           |
| 0.7456 | 7250 | -             | 0.0175 | 0.9074                      |
| 0.7507 | 7300 | 0.1222        | -      | -                           |
| 0.7610 | 7400 | 0.1194        | -      | -                           |
| 0.7713 | 7500 | 0.1284        | 0.0166 | 0.9080                      |
| 0.7816 | 7600 | 0.1147        | -      | -                           |
| 0.7919 | 7700 | 0.1182        | -      | -                           |
| 0.7970 | 7750 | -             | 0.0170 | 0.9116                      |
| 0.8021 | 7800 | 0.1157        | -      | -                           |
| 0.8124 | 7900 | 0.1299        | -      | -                           |
| 0.8227 | 8000 | 0.114         | 0.0163 | 0.9105                      |
| 0.8330 | 8100 | 0.1141        | -      | -                           |
| 0.8433 | 8200 | 0.1195        | -      | -                           |
| 0.8484 | 8250 | -             | 0.0160 | 0.9112                      |
| 0.8536 | 8300 | 0.1073        | -      | -                           |
| 0.8638 | 8400 | 0.1044        | -      | -                           |
| 0.8741 | 8500 | 0.1083        | 0.0160 | 0.9153                      |
| 0.8844 | 8600 | 0.1103        | -      | -                           |
| 0.8947 | 8700 | 0.1145        | -      | -                           |
| 0.8998 | 8750 | -             | 0.0154 | 0.9133                      |
| 0.9050 | 8800 | 0.1083        | -      | -                           |
| 0.9153 | 8900 | 0.1205        | -      | -                           |
| 0.9255 | 9000 | 0.1124        | 0.0153 | 0.9162                      |
| 0.9358 | 9100 | 0.1067        | -      | -                           |
| 0.9461 | 9200 | 0.116         | -      | -                           |
| 0.9513 | 9250 | -             | 0.0152 | 0.9171                      |
| 0.9564 | 9300 | 0.1126        | -      | -                           |
| 0.9667 | 9400 | 0.1075        | -      | -                           |
| 0.9770 | 9500 | 0.1128        | 0.0149 | 0.9169                      |
| 0.9872 | 9600 | 0.1143        | -      | -                           |
| 0.9975 | 9700 | 0.1175        | -      | -                           |

</details>

### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.0
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->