File size: 1,581 Bytes
3dcde5e
 
 
 
fd52004
3dcde5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
license: mit
tags:
- generated_from_trainer
base_model: alphahg/mbart-large-50-finetuned-en-to-ko-8603428
model-index:
- name: mbart-large-50-finetuned-en-to-ko-8603428-finetuned-en-to-ko-9914408
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mbart-large-50-finetuned-en-to-ko-8603428-finetuned-en-to-ko-9914408

This model is a fine-tuned version of [alphahg/mbart-large-50-finetuned-en-to-ko-8603428](https://huggingface.co/alphahg/mbart-large-50-finetuned-en-to-ko-8603428) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8130

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.795         | 1.0   | 18752 | 0.8130          |


### Framework versions

- Transformers 4.25.1
- Pytorch 1.13.1+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2