cased / modeling_cased.py
altndrr's picture
Update model to latest code (#6)
cd16641
raw
history blame
6.51 kB
import os
from typing import Callable, Optional
import numpy as np
import torch
from transformers import CLIPModel, CLIPProcessor
from transformers.modeling_utils import PreTrainedModel
from .configuration_cased import CaSEDConfig
from .retrieval_cased import RetrievalDatabase, download_retrieval_databases
from .transforms_cased import default_vocabulary_transforms
class CaSEDModel(PreTrainedModel):
"""Transformers module for Category Search from External Databases (CaSED).
Reference:
- Conti et al. Vocabulary-free Image Classification. NeurIPS 2023.
Args:
config (CaSEDConfig): Configuration class for CaSED.
"""
config_class = CaSEDConfig
def __init__(self, config: CaSEDConfig):
super().__init__(config)
# load CLIP
model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
self.vision_encoder = model.vision_model
self.vision_proj = model.visual_projection
self.language_encoder = model.text_model
self.language_proj = model.text_projection
self.logit_scale = model.logit_scale.exp()
self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
# set hparams
self.hparams = {}
self.hparams["alpha"] = config.alpha
self.hparams["index_name"] = config.index_name
self.hparams["retrieval_num_results"] = config.retrieval_num_results
self.hparams["cache_dir"] = config.cache_dir
# create cache dir
os.makedirs(self.hparams["cache_dir"], exist_ok=True)
# download data
download_retrieval_databases(cache_dir=self.hparams["cache_dir"])
# setup vocabulary
self.vocabulary = RetrievalDatabase("cc12m", self.hparams["cache_dir"])
self._vocab_transform = default_vocabulary_transforms()
@property
def vocab_transform(self) -> Callable:
"""Get image preprocess transform.
The getter wraps the transform in a map_reduce function and applies it to a list of images.
If interested in the transform itself, use `self._vocab_transform`.
"""
vocab_transform = self._vocab_transform
def vocabs_transforms(texts: list[str]) -> list[torch.Tensor]:
return [vocab_transform(text) for text in texts]
return vocabs_transforms
def get_vocabulary(self, images_z: Optional[torch.Tensor] = None) -> list[list[str]]:
"""Get the vocabulary for a batch of images.
Args:
images_z (torch.Tensor): Batch of image embeddings.
"""
num_samples = self.hparams["retrieval_num_results"]
assert images_z is not None
images_z = images_z / images_z.norm(dim=-1, keepdim=True)
images_z = images_z.cpu().detach().numpy().tolist()
if isinstance(images_z[0], float):
images_z = [images_z]
query = np.matrix(images_z).astype("float32")
results = self.vocabulary.query(query, modality="text", num_samples=num_samples)
vocabularies = [[r["caption"] for r in result] for result in results]
return vocabularies
def forward(self, images: dict, alpha: Optional[float] = None) -> torch.Tensor:
"""Forward pass.
Args:
images (dict): Dictionary with the images. The expected keys are:
- pixel_values (torch.Tensor): Pixel values of the images.
alpha (Optional[float]): Alpha value for the interpolation.
"""
alpha = alpha or self.hparams["alpha"]
# forward the images
images["pixel_values"] = images["pixel_values"].to(self.device)
images_z = self.vision_proj(self.vision_encoder(**images)[1])
images_z = images_z / images_z.norm(dim=-1, keepdim=True)
vocabularies = self.get_vocabulary(images_z=images_z)
# encode unfiltered words
unfiltered_words = sum(vocabularies, [])
texts_z = self.processor(unfiltered_words, return_tensors="pt", padding=True)
texts_z["input_ids"] = texts_z["input_ids"][:, :77].to(self.device)
texts_z["attention_mask"] = texts_z["attention_mask"][:, :77].to(self.device)
texts_z = self.language_encoder(**texts_z)[1]
texts_z = self.language_proj(texts_z)
texts_z = texts_z / texts_z.norm(dim=-1, keepdim=True)
# generate a text embedding for each image from their unfiltered words
unfiltered_words_per_image = [len(vocab) for vocab in vocabularies]
texts_z = torch.split(texts_z, unfiltered_words_per_image)
texts_z = torch.stack([text_z.mean(dim=0) for text_z in texts_z])
texts_z = texts_z / texts_z.norm(dim=-1, keepdim=True)
# filter the words and embed them
vocabularies = self.vocab_transform(vocabularies)
vocabularies = [vocab or ["object"] for vocab in vocabularies]
words = sum(vocabularies, [])
words_z = self.processor(words, return_tensors="pt", padding=True)
words_z = {k: v.to(self.device) for k, v in words_z.items()}
words_z = self.language_encoder(**words_z)[1]
words_z = self.language_proj(words_z)
words_z = words_z / words_z.norm(dim=-1, keepdim=True)
# create a one-hot relation mask between images and words
words_per_image = [len(vocab) for vocab in vocabularies]
col_indices = torch.arange(sum(words_per_image))
row_indices = torch.arange(len(images_z)).repeat_interleave(torch.tensor(words_per_image))
mask = torch.zeros(len(images_z), sum(words_per_image), device=self.device)
mask[row_indices, col_indices] = 1
# get the image and text similarities
images_z = images_z / images_z.norm(dim=-1, keepdim=True)
texts_z = texts_z / texts_z.norm(dim=-1, keepdim=True)
words_z = words_z / words_z.norm(dim=-1, keepdim=True)
images_sim = self.logit_scale * images_z @ words_z.T
texts_sim = self.logit_scale * texts_z @ words_z.T
# mask unrelated words
images_sim = torch.masked_fill(images_sim, mask == 0, float("-inf"))
texts_sim = torch.masked_fill(texts_sim, mask == 0, float("-inf"))
# get the image and text predictions
images_p = images_sim.softmax(dim=-1)
texts_p = texts_sim.softmax(dim=-1)
# average the image and text predictions
samples_p = alpha * images_p + (1 - alpha) * texts_p
return {"scores": samples_p, "words": words, "vocabularies": vocabularies}