--- library_name: transformers license: other base_model: FourOhFour/Crispy_Crab_4B tags: - axolotl - generated_from_trainer model-index: - name: personal4B results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: FourOhFour/Crispy_Crab_4B model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false hub_model_id: jeiku/personal4B hub_strategy: "all_checkpoints" push_dataset_to_hub: hf_use_auth_token: true datasets: - path: jeiku/Hypno_ChatML type: sharegpt conversation: chatml - path: jeiku/Soul_ChatML type: sharegpt conversation: chatml - path: jeiku/Theory_Chat type: sharegpt conversation: chatml - path: jeiku/Writing type: completion field: text chat_template: chatml shuffle_merged_datasets: true val_set_size: 0.0025 output_dir: ./outputs/out adapter: lora_r: lora_alpha: lora_dropout: lora_target_linear: sequence_len: 8192 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true wandb_project: EXP4B wandb_entity: wandb_watch: wandb_name: EXP4B wandb_log_model: gradient_accumulation_steps: 12 micro_batch_size: 2 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.00001 weight_decay: 0.05 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: true gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_ratio: 0.1 evals_per_epoch: 2 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: fsdp: fsdp_config: special_tokens: pad_token: <|finetune_right_pad_id|> ```

# personal4B This model is a fine-tuned version of [FourOhFour/Crispy_Crab_4B](https://huggingface.co/FourOhFour/Crispy_Crab_4B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 12 - total_train_batch_size: 48 - total_eval_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.1634 | 0.8571 | 1 | 2.0454 | | 2.0907 | 1.7143 | 2 | 1.9455 | | 1.9539 | 2.5714 | 3 | 1.9296 | | 1.9493 | 3.4286 | 4 | 1.9273 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1