File size: 1,400 Bytes
f3173e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
---
tags: autonlp
language: unk
widget:
- text: "I love AutoNLP 🤗"
datasets:
- alvp/autonlp-data-alberti-stanza-names
co2_eq_emissions: 8.612473981829835
---
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 34318169
- CO2 Emissions (in grams): 8.612473981829835
## Validation Metrics
- Loss: 1.3520570993423462
- Accuracy: 0.6083916083916084
- Macro F1: 0.5420169617715481
- Micro F1: 0.6083916083916084
- Weighted F1: 0.5963328136975058
- Macro Precision: 0.5864033493660455
- Micro Precision: 0.6083916083916084
- Weighted Precision: 0.6364793882921277
- Macro Recall: 0.5545405576555766
- Micro Recall: 0.6083916083916084
- Weighted Recall: 0.6083916083916084
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/alvp/autonlp-alberti-stanza-names-34318169
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("alvp/autonlp-alberti-stanza-names-34318169", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("alvp/autonlp-alberti-stanza-names-34318169", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
``` |