prajwalJumde commited on
Commit
281cf5f
1 Parent(s): 7fbc944

Model save

Browse files
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/dit-large
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: MRR_image_classification_dit_29_jan_small75-finetuned-eurosat
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ config: default
19
+ split: train
20
+ args: default
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.47560975609756095
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # MRR_image_classification_dit_29_jan_small75-finetuned-eurosat
31
+
32
+ This model is a fine-tuned version of [microsoft/dit-large](https://huggingface.co/microsoft/dit-large) on the imagefolder dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 1.5785
35
+ - Accuracy: 0.4756
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
+ - train_batch_size: 8
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 4
59
+ - total_train_batch_size: 32
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 3
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 1.8795 | 0.98 | 10 | 1.6437 | 0.3049 |
70
+ | 1.6681 | 1.95 | 20 | 1.6446 | 0.4146 |
71
+ | 1.5603 | 2.93 | 30 | 1.5785 | 0.4756 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.37.2
77
+ - Pytorch 2.1.0+cu121
78
+ - Datasets 2.17.0
79
+ - Tokenizers 0.15.1
runs/Feb09_13-22-55_21fd87067db5/events.out.tfevents.1707484977.21fd87067db5.5198.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:81699c234aa5e9ddbb1c42cdc062050c99ad1647d7d6b416128beeb3486fb89e
3
- size 7226
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39112c35fce0bead53df451be342962a774bab2d0bf248cf63db85577259d206
3
+ size 7574