English
music
emotion
File size: 28,490 Bytes
0e5e818
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e51d8d7
 
0e5e818
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
import os
import shutil
import json
import torch
import torchaudio
import numpy as np
import logging
import warnings
import subprocess
import math
import random
import time
from pathlib import Path
from tqdm import tqdm
from PIL import Image
from huggingface_hub import snapshot_download
from omegaconf import DictConfig
import hydra
from hydra.utils import to_absolute_path
from transformers import Wav2Vec2FeatureExtractor, AutoModel
import mir_eval
import pretty_midi as pm
import gradio as gr
from gradio import Markdown
from music21 import converter
import torchaudio.transforms as T

# Custom utility imports
from utils import logger
from utils.btc_model import BTC_model
from utils.transformer_modules import *
from utils.transformer_modules import _gen_timing_signal, _gen_bias_mask
from utils.hparams import HParams
from utils.mir_eval_modules import (
    audio_file_to_features, idx2chord, idx2voca_chord,
    get_audio_paths, get_lab_paths
)
from utils.mert import FeatureExtractorMERT
from model.linear_mt_attn_ck import FeedforwardModelMTAttnCK

# Suppress unnecessary warnings and logs
warnings.filterwarnings("ignore")
logging.getLogger("transformers.modeling_utils").setLevel(logging.ERROR)

# from gradio import Markdown

PITCH_CLASS = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B']

pitch_num_dic = {
    'C': 0, 'C#': 1, 'D': 2, 'D#': 3, 'E': 4, 'F': 5,
    'F#': 6, 'G': 7, 'G#': 8, 'A': 9, 'A#': 10, 'B': 11
}

minor_major_dic = {
    'D-':'C#', 'E-':'D#', 'G-':'F#', 'A-':'G#', 'B-':'A#'
}
minor_major_dic2 = {
    'Db':'C#', 'Eb':'D#', 'Gb':'F#', 'Ab':'G#', 'Bb':'A#'
}

shift_major_dic = {
    'C': 0, 'C#': 1, 'D': 2, 'D#': 3, 'E': 4, 'F': 5,
    'F#': 6, 'G': 7, 'G#': 8, 'A': 9, 'A#': 10, 'B': 11
}

shift_minor_dic = {
    'A': 0, 'A#': 1, 'B': 2, 'C': 3, 'C#': 4, 'D': 5,  
    'D#': 6, 'E': 7, 'F': 8, 'F#': 9, 'G': 10, 'G#': 11, 
}

flat_to_sharp_mapping = {
    "Cb": "B", 
    "Db": "C#", 
    "Eb": "D#", 
    "Fb": "E", 
    "Gb": "F#", 
    "Ab": "G#", 
    "Bb": "A#"
}

segment_duration = 30
resample_rate = 24000
is_split = True

def normalize_chord(file_path, key, key_type='major'):
    with open(file_path, 'r') as f:
        lines = f.readlines()

    if key == "None":
        new_key = "C major"
        shift = 0
    else:
        #print ("asdas",key)
        if len(key) == 1:
            key = key[0].upper()
        else:
            key = key[0].upper() + key[1:]

        if key in minor_major_dic2:
            key = minor_major_dic2[key]
        
        shift = 0
        
        if key_type == "major":
            new_key = "C major"
            
            shift = shift_major_dic[key]
        else:
            new_key = "A minor"
            shift = shift_minor_dic[key]
    
    converted_lines = []
    for line in lines:
        if line.strip():  # Skip empty lines
            parts = line.split()
            start_time = parts[0]
            end_time = parts[1]
            chord = parts[2]  # The chord is in the 3rd column
            if chord == "N":
                newchordnorm = "N"
            elif chord == "X":
                newchordnorm = "X"
            elif ":" in chord:
                pitch = chord.split(":")[0]
                attr = chord.split(":")[1]
                pnum = pitch_num_dic [pitch]
                new_idx = (pnum - shift)%12
                newchord = PITCH_CLASS[new_idx]
                newchordnorm = newchord + ":" + attr
            else:
                pitch = chord
                pnum = pitch_num_dic [pitch]
                new_idx = (pnum - shift)%12
                newchord = PITCH_CLASS[new_idx]
                newchordnorm = newchord
            
            converted_lines.append(f"{start_time} {end_time} {newchordnorm}\n")
    
    return converted_lines

def sanitize_key_signature(key):
    return key.replace('-', 'b')

def resample_waveform(waveform, original_sample_rate, target_sample_rate):
    if original_sample_rate != target_sample_rate:
        resampler = T.Resample(original_sample_rate, target_sample_rate)
        return resampler(waveform), target_sample_rate
    return waveform, original_sample_rate

def split_audio(waveform, sample_rate):
    segment_samples = segment_duration * sample_rate
    total_samples = waveform.size(0)

    segments = []
    for start in range(0, total_samples, segment_samples):
        end = start + segment_samples
        if end <= total_samples:
            segment = waveform[start:end]
            segments.append(segment)
    
    # In case audio length is shorter than segment length.
    if len(segments) == 0: 
        segment = waveform
        segments.append(segment)

    return segments



class Music2emo:
    def __init__(
        self,
        name="amaai-lab/music2emo",
        device="cuda:0",
        cache_dir=None,
        local_files_only=False,
    ):
        
        # use_cuda = torch.cuda.is_available()
        # self.device = torch.device("cuda" if use_cuda else "cpu")
        model_weights = "saved_models/J_all.ckpt"
        self.device = device

        self.feature_extractor = FeatureExtractorMERT(model_name='m-a-p/MERT-v1-95M', device=self.device, sr=resample_rate)
        self.model_weights = model_weights

        self.music2emo_model = FeedforwardModelMTAttnCK(
            input_size= 768 * 2,
            output_size_classification=56,
            output_size_regression=2
        )

        checkpoint = torch.load(self.model_weights, map_location=self.device, weights_only=False)
        state_dict = checkpoint["state_dict"]
        
        # Adjust the keys in the state_dict
        state_dict = {key.replace("model.", ""): value for key, value in state_dict.items()}
        
        # Filter state_dict to match model's keys
        model_keys = set(self.music2emo_model.state_dict().keys())
        filtered_state_dict = {key: value for key, value in state_dict.items() if key in model_keys}
        
        # Load the filtered state_dict and set the model to evaluation mode
        self.music2emo_model.load_state_dict(filtered_state_dict)
        
        self.music2emo_model.to(self.device)
        self.music2emo_model.eval()

    def predict(self, audio, threshold = 0.5):

        feature_dir = Path("./inference/temp_out")
        output_dir = Path("./inference/output")
        
        if feature_dir.exists():
            shutil.rmtree(str(feature_dir))
        if output_dir.exists():
            shutil.rmtree(str(output_dir))
        
        feature_dir.mkdir(parents=True)
        output_dir.mkdir(parents=True)

        warnings.filterwarnings('ignore')
        logger.logging_verbosity(1)
        
        mert_dir = feature_dir / "mert"
        mert_dir.mkdir(parents=True)
        
        waveform, sample_rate = torchaudio.load(audio)
        if waveform.shape[0] > 1:
            waveform = waveform.mean(dim=0).unsqueeze(0)
        waveform = waveform.squeeze()
        waveform, sample_rate = resample_waveform(waveform, sample_rate, resample_rate)
        
        if is_split:        
            segments = split_audio(waveform, sample_rate)
            for i, segment in enumerate(segments):
                segment_save_path = os.path.join(mert_dir, f"segment_{i}.npy")
                self.feature_extractor.extract_features_from_segment(segment, sample_rate, segment_save_path)
        else:
            segment_save_path = os.path.join(mert_dir, f"segment_0.npy")
            self.feature_extractor.extract_features_from_segment(waveform, sample_rate, segment_save_path)

        embeddings = []
        layers_to_extract = [5,6]
        segment_embeddings = []
        for filename in sorted(os.listdir(mert_dir)):  # Sort files to ensure sequential order
            file_path = os.path.join(mert_dir, filename)
            if os.path.isfile(file_path) and filename.endswith('.npy'):
                segment = np.load(file_path)
                concatenated_features = np.concatenate(
                    [segment[:, layer_idx, :] for layer_idx in layers_to_extract], axis=1
                )
                concatenated_features = np.squeeze(concatenated_features)  # Shape: 768 * 2 = 1536
                segment_embeddings.append(concatenated_features)

        segment_embeddings = np.array(segment_embeddings)
        if len(segment_embeddings) > 0:
            final_embedding_mert = np.mean(segment_embeddings, axis=0)
        else:
            final_embedding_mert = np.zeros((1536,))

        final_embedding_mert = torch.from_numpy(final_embedding_mert)
        final_embedding_mert.to(self.device)

        # --- Chord feature extract ---
        config = HParams.load("./inference/data/run_config.yaml")
        config.feature['large_voca'] = True
        config.model['num_chords'] = 170
        model_file = './inference/data/btc_model_large_voca.pt'
        idx_to_chord = idx2voca_chord()
        model = BTC_model(config=config.model).to(self.device)

        if os.path.isfile(model_file):
            checkpoint = torch.load(model_file)
            mean = checkpoint['mean']
            std = checkpoint['std']
            model.load_state_dict(checkpoint['model'])

        audio_path = audio
        audio_id = audio_path.split("/")[-1][:-4]
        try:
            feature, feature_per_second, song_length_second = audio_file_to_features(audio_path, config)
        except:
            logger.info("audio file failed to load : %s" % audio_path)
            assert(False)
            
        logger.info("audio file loaded and feature computation success : %s" % audio_path)
        
        feature = feature.T
        feature = (feature - mean) / std
        time_unit = feature_per_second
        n_timestep = config.model['timestep']

        num_pad = n_timestep - (feature.shape[0] % n_timestep)
        feature = np.pad(feature, ((0, num_pad), (0, 0)), mode="constant", constant_values=0)
        num_instance = feature.shape[0] // n_timestep

        start_time = 0.0
        lines = []
        with torch.no_grad():
            model.eval()
            feature = torch.tensor(feature, dtype=torch.float32).unsqueeze(0).to(self.device)
            for t in range(num_instance):
                self_attn_output, _ = model.self_attn_layers(feature[:, n_timestep * t:n_timestep * (t + 1), :])
                prediction, _ = model.output_layer(self_attn_output)
                prediction = prediction.squeeze()
                for i in range(n_timestep):
                    if t == 0 and i == 0:
                        prev_chord = prediction[i].item()
                        continue
                    if prediction[i].item() != prev_chord:
                        lines.append(
                            '%.3f %.3f %s\n' % (start_time, time_unit * (n_timestep * t + i), idx_to_chord[prev_chord]))
                        start_time = time_unit * (n_timestep * t + i)
                        prev_chord = prediction[i].item()
                    if t == num_instance - 1 and i + num_pad == n_timestep:
                        if start_time != time_unit * (n_timestep * t + i):
                            lines.append('%.3f %.3f %s\n' % (start_time, time_unit * (n_timestep * t + i), idx_to_chord[prev_chord]))
                        break

        save_path = os.path.join(feature_dir, os.path.split(audio_path)[-1].replace('.mp3', '').replace('.wav', '') + '.lab')
        with open(save_path, 'w') as f:
            for line in lines:
                f.write(line)

        # logger.info("label file saved : %s" % save_path)

        # lab file to midi file
        starts, ends, pitchs = list(), list(), list()

        intervals, chords = mir_eval.io.load_labeled_intervals(save_path)
        for p in range(12):
            for i, (interval, chord) in enumerate(zip(intervals, chords)):
                root_num, relative_bitmap, _ = mir_eval.chord.encode(chord)
                tmp_label = mir_eval.chord.rotate_bitmap_to_root(relative_bitmap, root_num)[p]
                if i == 0:
                    start_time = interval[0]
                    label = tmp_label
                    continue
                if tmp_label != label:
                    if label == 1.0:
                        starts.append(start_time), ends.append(interval[0]), pitchs.append(p + 48)
                    start_time = interval[0]
                    label = tmp_label
                if i == (len(intervals) - 1): 
                    if label == 1.0:
                        starts.append(start_time), ends.append(interval[1]), pitchs.append(p + 48)

        midi = pm.PrettyMIDI()
        instrument = pm.Instrument(program=0)

        for start, end, pitch in zip(starts, ends, pitchs):
            pm_note = pm.Note(velocity=120, pitch=pitch, start=start, end=end)
            instrument.notes.append(pm_note)

        midi.instruments.append(instrument)
        midi.write(save_path.replace('.lab', '.midi'))

        tonic_signatures = ["A", "A#", "B", "C", "C#", "D", "D#", "E", "F", "F#", "G", "G#"]
        mode_signatures = ["major", "minor"]  # Major and minor modes

        tonic_to_idx = {tonic: idx for idx, tonic in enumerate(tonic_signatures)}
        mode_to_idx = {mode: idx for idx, mode in enumerate(mode_signatures)}
        idx_to_tonic = {idx: tonic for tonic, idx in tonic_to_idx.items()}
        idx_to_mode = {idx: mode for mode, idx in mode_to_idx.items()}

        with open('inference/data/chord.json', 'r') as f:
            chord_to_idx = json.load(f)
        with open('inference/data/chord_inv.json', 'r') as f:
            idx_to_chord = json.load(f)
            idx_to_chord = {int(k): v for k, v in idx_to_chord.items()}  # Ensure keys are ints        
        with open('inference/data/chord_root.json') as json_file:
            chordRootDic = json.load(json_file)
        with open('inference/data/chord_attr.json') as json_file:
            chordAttrDic = json.load(json_file)

        try:
            midi_file = converter.parse(save_path.replace('.lab', '.midi'))
            key_signature = str(midi_file.analyze('key'))
        except Exception as e:
            key_signature = "None"

        key_parts = key_signature.split()
        key_signature = sanitize_key_signature(key_parts[0])  # Sanitize key signature
        key_type = key_parts[1] if len(key_parts) > 1 else 'major'

        # --- Key feature (Tonic and Mode separation) --- 
        if key_signature == "None":
            mode = "major"
        else:
            mode = key_signature.split()[-1]
        
        encoded_mode = mode_to_idx.get(mode, 0)
        mode_tensor = torch.tensor([encoded_mode], dtype=torch.long).to(self.device)

        converted_lines = normalize_chord(save_path, key_signature, key_type)

        lab_norm_path = save_path[:-4] + "_norm.lab"
        
        # Write the converted lines to the new file
        with open(lab_norm_path, 'w') as f:
            f.writelines(converted_lines)

        chords = []
        
        if not os.path.exists(lab_norm_path):
            chords.append((float(0), float(0), "N"))
        else:
            with open(lab_norm_path, 'r') as file:
                for line in file:
                    start, end, chord = line.strip().split()
                    chords.append((float(start), float(end), chord))

        encoded = []
        encoded_root= []
        encoded_attr=[]
        durations = []

        for start, end, chord in chords:
            chord_arr = chord.split(":")
            if len(chord_arr) == 1:
                chordRootID = chordRootDic[chord_arr[0]]
                if chord_arr[0] == "N" or chord_arr[0] == "X":
                    chordAttrID = 0
                else:
                    chordAttrID = 1
            elif len(chord_arr) == 2:
                chordRootID = chordRootDic[chord_arr[0]]
                chordAttrID = chordAttrDic[chord_arr[1]]
            encoded_root.append(chordRootID)
            encoded_attr.append(chordAttrID)

            if chord in chord_to_idx:
                encoded.append(chord_to_idx[chord])
            else:
                print(f"Warning: Chord {chord} not found in chord.json. Skipping.")
            
            durations.append(end - start)  # Compute duration
        
        encoded_chords = np.array(encoded)
        encoded_chords_root = np.array(encoded_root)
        encoded_chords_attr = np.array(encoded_attr)
        
        # Maximum sequence length for chords
        max_sequence_length = 100  # Define this globally or as a parameter

        # Truncate or pad chord sequences
        if len(encoded_chords) > max_sequence_length:
            # Truncate to max length
            encoded_chords = encoded_chords[:max_sequence_length]
            encoded_chords_root = encoded_chords_root[:max_sequence_length]
            encoded_chords_attr = encoded_chords_attr[:max_sequence_length]
        
        else:
            # Pad with zeros (padding value for chords)
            padding = [0] * (max_sequence_length - len(encoded_chords))
            encoded_chords = np.concatenate([encoded_chords, padding])
            encoded_chords_root = np.concatenate([encoded_chords_root, padding])
            encoded_chords_attr = np.concatenate([encoded_chords_attr, padding])
            
        # Convert to tensor
        chords_tensor = torch.tensor(encoded_chords, dtype=torch.long).to(self.device)
        chords_root_tensor = torch.tensor(encoded_chords_root, dtype=torch.long).to(self.device)
        chords_attr_tensor = torch.tensor(encoded_chords_attr, dtype=torch.long).to(self.device)

        model_input_dic = {
            "x_mert": final_embedding_mert.unsqueeze(0),
            "x_chord": chords_tensor.unsqueeze(0),
            "x_chord_root": chords_root_tensor.unsqueeze(0),
            "x_chord_attr": chords_attr_tensor.unsqueeze(0),
            "x_key": mode_tensor.unsqueeze(0)
        }

        model_input_dic = {k: v.to(self.device) for k, v in model_input_dic.items()}
        classification_output, regression_output = self.music2emo_model(model_input_dic)
        probs = torch.sigmoid(classification_output)

        tag_list = np.load ( "./inference/data/tag_list.npy")
        tag_list = tag_list[127:]
        mood_list = [t.replace("mood/theme---", "") for t in tag_list]
        threshold = threshold
        predicted_moods = [mood_list[i] for i, p in enumerate(probs.squeeze().tolist()) if p > threshold]
        valence, arousal = regression_output.squeeze().tolist()

        model_output_dic = {
            "valence": valence,
            "arousal": arousal,
            "predicted_moods": predicted_moods
        }

        return model_output_dic

# Initialize Mustango
if torch.cuda.is_available():
    music2emo = Music2emo()
else:
    music2emo = Music2emo(device="cpu")


def format_prediction(model_output_dic):
    """Format the model output in a more readable and attractive format"""
    valence = model_output_dic["valence"]
    arousal = model_output_dic["arousal"]
    moods = model_output_dic["predicted_moods"]
    
    # Create a formatted string with emojis and proper formatting
    output_text = """
🎡 **Music Emotion Recognition Results** 🎡
--------------------------------------------------
🎭 **Predicted Mood Tags:** {}
πŸ’– **Valence:** {:.2f} (Scale: 1-9)
⚑ **Arousal:** {:.2f} (Scale: 1-9)
--------------------------------------------------
    """.format(
        ', '.join(moods) if moods else 'None',
        valence,
        arousal
    )
    
    return output_text

title = "Music2Emo: Towards Unified Music Emotion Recognition across Dimensional and Categorical Models"
description_text = """
<p>
Upload an audio file to analyze its emotional characteristics using Music2Emo.
The model will predict:
β€’ Mood tags describing the emotional content
β€’ Valence score (1-9 scale, representing emotional positivity)
β€’ Arousal score (1-9 scale, representing emotional intensity)
</p>
"""

css = """
#output-text {
    font-family: monospace;
    white-space: pre-wrap;
    font-size: 16px;
    background-color: #333333;
    padding: 20px;
    border-radius: 10px;
    margin: 10px 0;
}
.gradio-container {
    font-family: 'Inter', -apple-system, system-ui, sans-serif;
}
.gr-button {
    color: white;
    background: #1565c0;
    border-radius: 100vh;
}
"""




# Initialize Music2Emo
if torch.cuda.is_available():
    music2emo = Music2emo()
else:
    music2emo = Music2emo(device="cpu")

with gr.Blocks(css=css) as demo:
    gr.HTML(f"<h1><center>{title}</center></h1>")
    gr.Markdown(description_text)
    
    with gr.Row():
        with gr.Column(scale=1):
            input_audio = gr.Audio(
                label="Upload Audio File",
                type="filepath"  # Removed 'source' parameter
            )
            threshold = gr.Slider(
                minimum=0.0,
                maximum=1.0,
                value=0.5,
                step=0.01,
                label="Mood Detection Threshold",
                info="Adjust threshold for mood detection (0.0 to 1.0)"
            )
            predict_btn = gr.Button("🎭 Analyze Emotions", variant="primary")
        
        with gr.Column(scale=1):
            output_text = gr.Markdown(
                label="Analysis Results",
                elem_id="output-text"
            )
            
            # Add example usage
            gr.Examples(
                examples=["inference/input/test.mp3"],
                inputs=input_audio,
                outputs=output_text,
                fn=lambda x: format_prediction(music2emo.predict(x, 0.5)),
                cache_examples=True
            )

    predict_btn.click(
        fn=lambda audio, thresh: format_prediction(music2emo.predict(audio, thresh)),
        inputs=[input_audio, threshold],
        outputs=output_text
    )

    gr.Markdown("""
    ### πŸ“ Notes:
    - Supported audio formats: MP3, WAV
    - For best results, use high-quality audio files
    - Processing may take a few moments depending on file size
    """)

# Launch the demo
demo.queue().launch()

# with gr.Blocks(css=css) as demo:
#     gr.HTML(f"<h1><center>{title}</center></h1>")
#     gr.Markdown(description_text)
    
#     with gr.Row():
#         with gr.Column(scale=1):
#             input_audio = gr.Audio(
#                 label="Upload Audio File",
#                 type="filepath",
#                 source="upload"
#             )
#             threshold = gr.Slider(
#                 minimum=0.0,
#                 maximum=1.0,
#                 value=0.5,
#                 step=0.01,
#                 label="Mood Detection Threshold",
#                 info="Adjust threshold for mood detection (0.0 to 1.0)"
#             )
#             predict_btn = gr.Button("🎭 Analyze Emotions", variant="primary")
        
#         with gr.Column(scale=1):
#             output_text = gr.Markdown(
#                 label="Analysis Results",
#                 elem_id="output-text"
#             )
            
#             # Add example usage
#             gr.Examples(
#                 examples=["inference/input/test.mp3"],
#                 inputs=input_audio,
#                 outputs=output_text,
#                 fn=lambda x: format_prediction(music2emo.predict(x, 0.5)),
#                 cache_examples=True
#             )

#     predict_btn.click(
#         fn=lambda audio, thresh: format_prediction(music2emo.predict(audio, thresh)),
#         inputs=[input_audio, threshold],
#         outputs=output_text
#     )

#     gr.Markdown("""
#     ### πŸ“ Notes:
#     - Supported audio formats: MP3, WAV
#     - For best results, use high-quality audio files
#     - Processing may take a few moments depending on file size
#     """)

# # Launch the demo
# demo.queue().launch()


# def gradio_predict(input_audio, threshold):
#     model_output_dic = music2emo.predict(input_audio, threshold)
#     return model_output_dic


# def format_prediction(model_output_dic):
#     """Format the model output for display"""
#     valence = model_output_dic["valence"]
#     arousal = model_output_dic["arousal"]
#     moods = model_output_dic["predicted_moods"]
    
#     # Format the output as a dictionary for the JSON component
#     formatted_output = {
#         "Dimensional Scores": {
#             "Valence": f"{valence:.3f}",
#             "Arousal": f"{arousal:.3f}"
#         },
#         "Predicted Moods": moods
#     }
    
#     return formatted_output

# title = "Music2Emo: Towards Unified Music Emotion Recognition across Dimensional and Categorical Models"
# description_text = """
# <p>
# Predict emotion using Music2Emo by providing an input audio.
# <br/><br/> This is the demo for Music2Emo: Towards Unified Music Emotion Recognition across Dimensional and Categorical Models
# <a href="https://arxiv.org/abs/2502.03979">Read our paper.</a>
# </p>
# """

# css = '''
# #duplicate-button {
#     margin: auto;
#     color: white;
#     background: #1565c0;
#     border-radius: 100vh;
# }
# '''

# # Initialize Music2Emo
# if torch.cuda.is_available():
#     music2emo = Music2emo()
# else:
#     music2emo = Music2emo(device="cpu")



# with gr.Blocks(css=css) as demo:
#     title = gr.HTML(f"<h1><center>{title}</center></h1>")
#     gr.Markdown(
#         """
#         This is the demo for Music2Emo: Towards Unified Music Emotion Recognition across Dimensional and Categorical Models.
#         [Read our paper](https://arxiv.org/abs/2502.03979).
#         """
#     )
    
#     with gr.Row():
#         with gr.Column():
#             with gr.Column(visible=True) as rowA:
#                 with gr.Row():
#                     input_audio = gr.Audio(
#                         label="Input Audio",
#                         type="filepath",
#                         source="upload"
#                     )
#                 with gr.Row():
#                     threshold = gr.Slider(
#                         minimum=0.0,
#                         maximum=1.0,
#                         value=0.5,
#                         step=0.01,
#                         label="Mood Detection Threshold",
#                         info="Adjust threshold for mood detection (0.0 to 1.0)"
#                     )
#                 with gr.Row():
#                     btn = gr.Button("Predict", variant="primary")

#         with gr.Column():
#             with gr.Row():
#                 output_emo = gr.JSON(
#                     label="Prediction Results",
#                     info="Displays valence, arousal scores and predicted moods"
#                 )

#     btn.click(
#         fn=lambda audio, thresh: format_prediction(music2emo.predict(audio, thresh)),
#         inputs=[input_audio, threshold],
#         outputs=[output_emo],
#     )

# # Launch the demo
# demo.queue().launch()

# title="Music2Emo: Towards Unified Music Emotion Recognition across Dimensional and Categorical Models"
# description_text = """
# <p>
# Predict emotion using Music2Emo by providing an input audio.
# <br/><br/> This is the demo for Music2Emo: Towards Unified Music Emotion Recognition across Dimensional and Categorical Models
# <a href="https://arxiv.org/abs/2502.03979">Read our paper.</a>
# <p/>
# """


# css = '''
# #duplicate-button {
# margin: auto;
# color: white;
# background: #1565c0;
# border-radius: 100vh;
# }
# '''
# # with gr.Blocks() as demo:
# with gr.Blocks(css=css) as demo:
#     title=gr.HTML(f"<h1><center>{title}</center></h1>")
#     gr.Markdown(
#             """
#             This is the demo for Music2Emo: Towards Unified Music Emotion Recognition across Dimensional and Categorical Models.
#             [Read our paper](https://arxiv.org/abs/2502.03979).
#             """
#     )
#     with gr.Row():
#         with gr.Column():
#             # with gr.Row(visible=True) as mainA:
#             # with gr.Column(visible=True) as colA:
#             with gr.Column(visible=True) as rowA:
#                 with gr.Row():
#                     input_audio = ???
#                 with gr.Row():
#                     with gr.Row():
#                         threshold = ???
#                 with gr.Row():
#                     btn = gr.Button("Predict")

#         with gr.Column():
#             with gr.Row():
#                 output_emo = gr.Label ???

#     btn.click(
#         fn=gradio_predict, 
#         inputs=[input_audio,threshold],
#         outputs=[output_emo],
#     )

# demo.queue().launch()