English
music
emotion
File size: 19,313 Bytes
b036e59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
import os
import mir_eval
import pretty_midi as pm
from utils import logger
from utils.btc_model import BTC_model
# from preprocess.BTC.btc_model import *

from utils.transformer_modules import *
from utils.transformer_modules import _gen_timing_signal, _gen_bias_mask
from utils.hparams import HParams


from utils.mir_eval_modules import audio_file_to_features, idx2chord, idx2voca_chord, get_audio_paths, get_lab_paths
import argparse
import warnings
from music21 import converter
import os
from tqdm import tqdm
import json
import torch
import torchaudio
import torchaudio.transforms as T
import numpy as np
from omegaconf import DictConfig
import hydra
from hydra.utils import to_absolute_path
from transformers import Wav2Vec2FeatureExtractor, AutoModel
from utils.mert import FeatureExtractorMERT
from model.linear_mt_attn_ck import FeedforwardModelMTAttnCK
from pathlib import Path
import gradio as gr

import shutil
import warnings

import logging
logging.getLogger("transformers.modeling_utils").setLevel(logging.ERROR)




# from gradio import Markdown

PITCH_CLASS = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B']

pitch_num_dic = {
    'C': 0, 'C#': 1, 'D': 2, 'D#': 3, 'E': 4, 'F': 5,
    'F#': 6, 'G': 7, 'G#': 8, 'A': 9, 'A#': 10, 'B': 11
}

minor_major_dic = {
    'D-':'C#', 'E-':'D#', 'G-':'F#', 'A-':'G#', 'B-':'A#'
}
minor_major_dic2 = {
    'Db':'C#', 'Eb':'D#', 'Gb':'F#', 'Ab':'G#', 'Bb':'A#'
}

shift_major_dic = {
    'C': 0, 'C#': 1, 'D': 2, 'D#': 3, 'E': 4, 'F': 5,
    'F#': 6, 'G': 7, 'G#': 8, 'A': 9, 'A#': 10, 'B': 11
}

shift_minor_dic = {
    'A': 0, 'A#': 1, 'B': 2, 'C': 3, 'C#': 4, 'D': 5,  
    'D#': 6, 'E': 7, 'F': 8, 'F#': 9, 'G': 10, 'G#': 11, 
}

flat_to_sharp_mapping = {
    "Cb": "B", 
    "Db": "C#", 
    "Eb": "D#", 
    "Fb": "E", 
    "Gb": "F#", 
    "Ab": "G#", 
    "Bb": "A#"
}

segment_duration = 30
resample_rate = 24000
is_split = True

def normalize_chord(file_path, key, key_type='major'):
    with open(file_path, 'r') as f:
        lines = f.readlines()

    if key == "None":
        new_key = "C major"
        shift = 0
    else:
        #print ("asdas",key)
        if len(key) == 1:
            key = key[0].upper()
        else:
            key = key[0].upper() + key[1:]

        if key in minor_major_dic2:
            key = minor_major_dic2[key]
        
        shift = 0
        
        if key_type == "major":
            new_key = "C major"
            
            shift = shift_major_dic[key]
        else:
            new_key = "A minor"
            shift = shift_minor_dic[key]
    
    converted_lines = []
    for line in lines:
        if line.strip():  # Skip empty lines
            parts = line.split()
            start_time = parts[0]
            end_time = parts[1]
            chord = parts[2]  # The chord is in the 3rd column
            if chord == "N":
                newchordnorm = "N"
            elif chord == "X":
                newchordnorm = "X"
            elif ":" in chord:
                pitch = chord.split(":")[0]
                attr = chord.split(":")[1]
                pnum = pitch_num_dic [pitch]
                new_idx = (pnum - shift)%12
                newchord = PITCH_CLASS[new_idx]
                newchordnorm = newchord + ":" + attr
            else:
                pitch = chord
                pnum = pitch_num_dic [pitch]
                new_idx = (pnum - shift)%12
                newchord = PITCH_CLASS[new_idx]
                newchordnorm = newchord
            
            converted_lines.append(f"{start_time} {end_time} {newchordnorm}\n")
    
    return converted_lines

def sanitize_key_signature(key):
    return key.replace('-', 'b')

def resample_waveform(waveform, original_sample_rate, target_sample_rate):
    if original_sample_rate != target_sample_rate:
        resampler = T.Resample(original_sample_rate, target_sample_rate)
        return resampler(waveform), target_sample_rate
    return waveform, original_sample_rate

def split_audio(waveform, sample_rate):
    segment_samples = segment_duration * sample_rate
    total_samples = waveform.size(0)

    segments = []
    for start in range(0, total_samples, segment_samples):
        end = start + segment_samples
        if end <= total_samples:
            segment = waveform[start:end]
            segments.append(segment)
    
    # In case audio length is shorter than segment length.
    if len(segments) == 0: 
        segment = waveform
        segments.append(segment)

    return segments


class Music2emo:
    def __init__(
        self,
        model_weights = "saved_models/J_all.ckpt"
    ):
        use_cuda = torch.cuda.is_available()
        self.device = torch.device("cuda" if use_cuda else "cpu")

        self.feature_extractor = FeatureExtractorMERT(model_name='m-a-p/MERT-v1-95M', device=self.device, sr=resample_rate)
        self.model_weights = model_weights

        self.music2emo_model = FeedforwardModelMTAttnCK(
            input_size= 768 * 2,
            output_size_classification=56,
            output_size_regression=2
        )

        checkpoint = torch.load(self.model_weights, map_location=self.device, weights_only=False)
        state_dict = checkpoint["state_dict"]
        
        # Adjust the keys in the state_dict
        state_dict = {key.replace("model.", ""): value for key, value in state_dict.items()}
        
        # Filter state_dict to match model's keys
        model_keys = set(self.music2emo_model.state_dict().keys())
        filtered_state_dict = {key: value for key, value in state_dict.items() if key in model_keys}
        
        # Load the filtered state_dict and set the model to evaluation mode
        self.music2emo_model.load_state_dict(filtered_state_dict)
        
        self.music2emo_model.to(self.device)
        self.music2emo_model.eval()

    def predict(self, audio, threshold = 0.5):

        feature_dir = Path("./temp_out")
        output_dir = Path("./output")
        current_dir = Path("./")
        
        if feature_dir.exists():
            shutil.rmtree(str(feature_dir))
        if output_dir.exists():
            shutil.rmtree(str(output_dir))
        
        feature_dir.mkdir(parents=True)
        output_dir.mkdir(parents=True)

        warnings.filterwarnings('ignore')
        logger.logging_verbosity(1)
        
        # use_cuda = torch.cuda.is_available()
        # device = torch.device("cuda" if use_cuda else "cpu")

        mert_dir = feature_dir / "mert"
        mert_dir.mkdir(parents=True)


        # args = parser.parse_args()

        # --- MERT feature extract ---
        
        waveform, sample_rate = torchaudio.load(audio)
        if waveform.shape[0] > 1:
            waveform = waveform.mean(dim=0).unsqueeze(0)
        waveform = waveform.squeeze()
        waveform, sample_rate = resample_waveform(waveform, sample_rate, resample_rate)
        
        if is_split:        
            segments = split_audio(waveform, sample_rate)
            for i, segment in enumerate(segments):
                segment_save_path = os.path.join(mert_dir, f"segment_{i}.npy")
                self.feature_extractor.extract_features_from_segment(segment, sample_rate, segment_save_path)
        else:
            segment_save_path = os.path.join(mert_dir, f"segment_0.npy")
            self.feature_extractor.extract_features_from_segment(waveform, sample_rate, segment_save_path)

        embeddings = []
        layers_to_extract = [5,6]
        segment_embeddings = []
        for filename in sorted(os.listdir(mert_dir)):  # Sort files to ensure sequential order
            file_path = os.path.join(mert_dir, filename)
            if os.path.isfile(file_path) and filename.endswith('.npy'):
                segment = np.load(file_path)
                concatenated_features = np.concatenate(
                    [segment[:, layer_idx, :] for layer_idx in layers_to_extract], axis=1
                )
                concatenated_features = np.squeeze(concatenated_features)  # Shape: 768 * 2 = 1536
                segment_embeddings.append(concatenated_features)

        segment_embeddings = np.array(segment_embeddings)
        if len(segment_embeddings) > 0:
            final_embedding_mert = np.mean(segment_embeddings, axis=0)
        else:
            final_embedding_mert = np.zeros((1536,))

        final_embedding_mert = torch.from_numpy(final_embedding_mert)
        final_embedding_mert.to(self.device)

        # --- Chord feature extract ---
        config = HParams.load("./inference/data/run_config.yaml")
        config.feature['large_voca'] = True
        config.model['num_chords'] = 170
        model_file = './inference/data/btc_model_large_voca.pt'
        idx_to_chord = idx2voca_chord()
        model = BTC_model(config=config.model).to(self.device)

        if os.path.isfile(model_file):
            checkpoint = torch.load(model_file)
            mean = checkpoint['mean']
            std = checkpoint['std']
            model.load_state_dict(checkpoint['model'])

        audio_path = audio
        audio_id = audio_path.split("/")[-1][:-4]
        try:
            feature, feature_per_second, song_length_second = audio_file_to_features(audio_path, config)
        except:
            logger.info("audio file failed to load : %s" % audio_path)
            assert(False)
            
        logger.info("audio file loaded and feature computation success : %s" % audio_path)
        
        feature = feature.T
        feature = (feature - mean) / std
        time_unit = feature_per_second
        n_timestep = config.model['timestep']

        num_pad = n_timestep - (feature.shape[0] % n_timestep)
        feature = np.pad(feature, ((0, num_pad), (0, 0)), mode="constant", constant_values=0)
        num_instance = feature.shape[0] // n_timestep

        start_time = 0.0
        lines = []
        with torch.no_grad():
            model.eval()
            feature = torch.tensor(feature, dtype=torch.float32).unsqueeze(0).to(self.device)
            for t in range(num_instance):
                self_attn_output, _ = model.self_attn_layers(feature[:, n_timestep * t:n_timestep * (t + 1), :])
                prediction, _ = model.output_layer(self_attn_output)
                prediction = prediction.squeeze()
                for i in range(n_timestep):
                    if t == 0 and i == 0:
                        prev_chord = prediction[i].item()
                        continue
                    if prediction[i].item() != prev_chord:
                        lines.append(
                            '%.3f %.3f %s\n' % (start_time, time_unit * (n_timestep * t + i), idx_to_chord[prev_chord]))
                        start_time = time_unit * (n_timestep * t + i)
                        prev_chord = prediction[i].item()
                    if t == num_instance - 1 and i + num_pad == n_timestep:
                        if start_time != time_unit * (n_timestep * t + i):
                            lines.append('%.3f %.3f %s\n' % (start_time, time_unit * (n_timestep * t + i), idx_to_chord[prev_chord]))
                        break

        save_path = os.path.join(feature_dir, os.path.split(audio_path)[-1].replace('.mp3', '').replace('.wav', '') + '.lab')
        with open(save_path, 'w') as f:
            for line in lines:
                f.write(line)

        # logger.info("label file saved : %s" % save_path)

        # lab file to midi file
        starts, ends, pitchs = list(), list(), list()

        intervals, chords = mir_eval.io.load_labeled_intervals(save_path)
        for p in range(12):
            for i, (interval, chord) in enumerate(zip(intervals, chords)):
                root_num, relative_bitmap, _ = mir_eval.chord.encode(chord)
                tmp_label = mir_eval.chord.rotate_bitmap_to_root(relative_bitmap, root_num)[p]
                if i == 0:
                    start_time = interval[0]
                    label = tmp_label
                    continue
                if tmp_label != label:
                    if label == 1.0:
                        starts.append(start_time), ends.append(interval[0]), pitchs.append(p + 48)
                    start_time = interval[0]
                    label = tmp_label
                if i == (len(intervals) - 1): 
                    if label == 1.0:
                        starts.append(start_time), ends.append(interval[1]), pitchs.append(p + 48)

        midi = pm.PrettyMIDI()
        instrument = pm.Instrument(program=0)

        for start, end, pitch in zip(starts, ends, pitchs):
            pm_note = pm.Note(velocity=120, pitch=pitch, start=start, end=end)
            instrument.notes.append(pm_note)

        midi.instruments.append(instrument)
        midi.write(save_path.replace('.lab', '.midi'))

        tonic_signatures = ["A", "A#", "B", "C", "C#", "D", "D#", "E", "F", "F#", "G", "G#"]
        mode_signatures = ["major", "minor"]  # Major and minor modes

        tonic_to_idx = {tonic: idx for idx, tonic in enumerate(tonic_signatures)}
        mode_to_idx = {mode: idx for idx, mode in enumerate(mode_signatures)}
        idx_to_tonic = {idx: tonic for tonic, idx in tonic_to_idx.items()}
        idx_to_mode = {idx: mode for mode, idx in mode_to_idx.items()}

        with open('inference/data/chord.json', 'r') as f:
            chord_to_idx = json.load(f)
        with open('inference/data/chord_inv.json', 'r') as f:
            idx_to_chord = json.load(f)
            idx_to_chord = {int(k): v for k, v in idx_to_chord.items()}  # Ensure keys are ints        
        with open('inference/data/chord_root.json') as json_file:
            chordRootDic = json.load(json_file)
        with open('inference/data/chord_attr.json') as json_file:
            chordAttrDic = json.load(json_file)

        try:
            midi_file = converter.parse(save_path.replace('.lab', '.midi'))
            key_signature = str(midi_file.analyze('key'))
        except Exception as e:
            key_signature = "None"

        key_parts = key_signature.split()
        key_signature = sanitize_key_signature(key_parts[0])  # Sanitize key signature
        key_type = key_parts[1] if len(key_parts) > 1 else 'major'

        # --- Key feature (Tonic and Mode separation) --- 
        if key_signature == "None":
            mode = "major"
        else:
            mode = key_signature.split()[-1]
        
        encoded_mode = mode_to_idx.get(mode, 0)
        mode_tensor = torch.tensor([encoded_mode], dtype=torch.long).to(self.device)

        converted_lines = normalize_chord(save_path, key_signature, key_type)

        lab_norm_path = save_path[:-4] + "_norm.lab"
        
        # Write the converted lines to the new file
        with open(lab_norm_path, 'w') as f:
            f.writelines(converted_lines)

        chords = []
        
        if not os.path.exists(lab_norm_path):
            chords.append((float(0), float(0), "N"))
        else:
            with open(lab_norm_path, 'r') as file:
                for line in file:
                    start, end, chord = line.strip().split()
                    chords.append((float(start), float(end), chord))

        encoded = []
        encoded_root= []
        encoded_attr=[]
        durations = []

        for start, end, chord in chords:
            chord_arr = chord.split(":")
            if len(chord_arr) == 1:
                chordRootID = chordRootDic[chord_arr[0]]
                if chord_arr[0] == "N" or chord_arr[0] == "X":
                    chordAttrID = 0
                else:
                    chordAttrID = 1
            elif len(chord_arr) == 2:
                chordRootID = chordRootDic[chord_arr[0]]
                chordAttrID = chordAttrDic[chord_arr[1]]
            encoded_root.append(chordRootID)
            encoded_attr.append(chordAttrID)

            if chord in chord_to_idx:
                encoded.append(chord_to_idx[chord])
            else:
                print(f"Warning: Chord {chord} not found in chord.json. Skipping.")
            
            durations.append(end - start)  # Compute duration
        
        encoded_chords = np.array(encoded)
        encoded_chords_root = np.array(encoded_root)
        encoded_chords_attr = np.array(encoded_attr)
        
        # Maximum sequence length for chords
        max_sequence_length = 100  # Define this globally or as a parameter

        # Truncate or pad chord sequences
        if len(encoded_chords) > max_sequence_length:
            # Truncate to max length
            encoded_chords = encoded_chords[:max_sequence_length]
            encoded_chords_root = encoded_chords_root[:max_sequence_length]
            encoded_chords_attr = encoded_chords_attr[:max_sequence_length]
        
        else:
            # Pad with zeros (padding value for chords)
            padding = [0] * (max_sequence_length - len(encoded_chords))
            encoded_chords = np.concatenate([encoded_chords, padding])
            encoded_chords_root = np.concatenate([encoded_chords_root, padding])
            encoded_chords_attr = np.concatenate([encoded_chords_attr, padding])
            
        # Convert to tensor
        chords_tensor = torch.tensor(encoded_chords, dtype=torch.long).to(self.device)
        chords_root_tensor = torch.tensor(encoded_chords_root, dtype=torch.long).to(self.device)
        chords_attr_tensor = torch.tensor(encoded_chords_attr, dtype=torch.long).to(self.device)

        model_input_dic = {
            "x_mert": final_embedding_mert.unsqueeze(0),
            "x_chord": chords_tensor.unsqueeze(0),
            "x_chord_root": chords_root_tensor.unsqueeze(0),
            "x_chord_attr": chords_attr_tensor.unsqueeze(0),
            "x_key": mode_tensor.unsqueeze(0)
        }

        model_input_dic = {k: v.to(self.device) for k, v in model_input_dic.items()}
        classification_output, regression_output = self.music2emo_model(model_input_dic)
        probs = torch.sigmoid(classification_output)

        

        tag_list = np.load ( "./inference/data/tag_list.npy")
        tag_list = tag_list[127:]
        mood_list = [t.replace("mood/theme---", "") for t in tag_list]
        threshold = threshold
        predicted_moods = [mood_list[i] for i, p in enumerate(probs.squeeze().tolist()) if p > threshold]

        # Print the results
        # print("Predicted Mood Tags:", predicted_moods)

        valence, arousal = regression_output.squeeze().tolist()

        # Print results
        # print("\n🎵 **Music Emotion Recognition Results** 🎵")
        # print("-" * 50)
        # print(f"🎭 **Predicted Mood Tags:** {', '.join(predicted_moods) if predicted_moods else 'None'}")
        # print(f"💖 **Valence:** {valence:.2f} (Scale: 1-9)")
        # print(f"⚡ **Arousal:** {arousal:.2f} (Scale: 1-9)")
        # print("-" * 50)

        # self.model.eval()
        # self.modelReg.eval()
        # with torch.set_grad_enabled(False):
            # f_path_midi = output_dir / "output.mid"
            # f_path_flac = output_dir / "output.flac"
            # f_path_video_out = output_dir / "output.mp4"

        model_output_dic = {
            "valence": valence,
            "arousal": arousal,
            "predicted_moods": predicted_moods
        }

        return model_output_dic