File size: 19,313 Bytes
b036e59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 |
import os
import mir_eval
import pretty_midi as pm
from utils import logger
from utils.btc_model import BTC_model
# from preprocess.BTC.btc_model import *
from utils.transformer_modules import *
from utils.transformer_modules import _gen_timing_signal, _gen_bias_mask
from utils.hparams import HParams
from utils.mir_eval_modules import audio_file_to_features, idx2chord, idx2voca_chord, get_audio_paths, get_lab_paths
import argparse
import warnings
from music21 import converter
import os
from tqdm import tqdm
import json
import torch
import torchaudio
import torchaudio.transforms as T
import numpy as np
from omegaconf import DictConfig
import hydra
from hydra.utils import to_absolute_path
from transformers import Wav2Vec2FeatureExtractor, AutoModel
from utils.mert import FeatureExtractorMERT
from model.linear_mt_attn_ck import FeedforwardModelMTAttnCK
from pathlib import Path
import gradio as gr
import shutil
import warnings
import logging
logging.getLogger("transformers.modeling_utils").setLevel(logging.ERROR)
# from gradio import Markdown
PITCH_CLASS = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B']
pitch_num_dic = {
'C': 0, 'C#': 1, 'D': 2, 'D#': 3, 'E': 4, 'F': 5,
'F#': 6, 'G': 7, 'G#': 8, 'A': 9, 'A#': 10, 'B': 11
}
minor_major_dic = {
'D-':'C#', 'E-':'D#', 'G-':'F#', 'A-':'G#', 'B-':'A#'
}
minor_major_dic2 = {
'Db':'C#', 'Eb':'D#', 'Gb':'F#', 'Ab':'G#', 'Bb':'A#'
}
shift_major_dic = {
'C': 0, 'C#': 1, 'D': 2, 'D#': 3, 'E': 4, 'F': 5,
'F#': 6, 'G': 7, 'G#': 8, 'A': 9, 'A#': 10, 'B': 11
}
shift_minor_dic = {
'A': 0, 'A#': 1, 'B': 2, 'C': 3, 'C#': 4, 'D': 5,
'D#': 6, 'E': 7, 'F': 8, 'F#': 9, 'G': 10, 'G#': 11,
}
flat_to_sharp_mapping = {
"Cb": "B",
"Db": "C#",
"Eb": "D#",
"Fb": "E",
"Gb": "F#",
"Ab": "G#",
"Bb": "A#"
}
segment_duration = 30
resample_rate = 24000
is_split = True
def normalize_chord(file_path, key, key_type='major'):
with open(file_path, 'r') as f:
lines = f.readlines()
if key == "None":
new_key = "C major"
shift = 0
else:
#print ("asdas",key)
if len(key) == 1:
key = key[0].upper()
else:
key = key[0].upper() + key[1:]
if key in minor_major_dic2:
key = minor_major_dic2[key]
shift = 0
if key_type == "major":
new_key = "C major"
shift = shift_major_dic[key]
else:
new_key = "A minor"
shift = shift_minor_dic[key]
converted_lines = []
for line in lines:
if line.strip(): # Skip empty lines
parts = line.split()
start_time = parts[0]
end_time = parts[1]
chord = parts[2] # The chord is in the 3rd column
if chord == "N":
newchordnorm = "N"
elif chord == "X":
newchordnorm = "X"
elif ":" in chord:
pitch = chord.split(":")[0]
attr = chord.split(":")[1]
pnum = pitch_num_dic [pitch]
new_idx = (pnum - shift)%12
newchord = PITCH_CLASS[new_idx]
newchordnorm = newchord + ":" + attr
else:
pitch = chord
pnum = pitch_num_dic [pitch]
new_idx = (pnum - shift)%12
newchord = PITCH_CLASS[new_idx]
newchordnorm = newchord
converted_lines.append(f"{start_time} {end_time} {newchordnorm}\n")
return converted_lines
def sanitize_key_signature(key):
return key.replace('-', 'b')
def resample_waveform(waveform, original_sample_rate, target_sample_rate):
if original_sample_rate != target_sample_rate:
resampler = T.Resample(original_sample_rate, target_sample_rate)
return resampler(waveform), target_sample_rate
return waveform, original_sample_rate
def split_audio(waveform, sample_rate):
segment_samples = segment_duration * sample_rate
total_samples = waveform.size(0)
segments = []
for start in range(0, total_samples, segment_samples):
end = start + segment_samples
if end <= total_samples:
segment = waveform[start:end]
segments.append(segment)
# In case audio length is shorter than segment length.
if len(segments) == 0:
segment = waveform
segments.append(segment)
return segments
class Music2emo:
def __init__(
self,
model_weights = "saved_models/J_all.ckpt"
):
use_cuda = torch.cuda.is_available()
self.device = torch.device("cuda" if use_cuda else "cpu")
self.feature_extractor = FeatureExtractorMERT(model_name='m-a-p/MERT-v1-95M', device=self.device, sr=resample_rate)
self.model_weights = model_weights
self.music2emo_model = FeedforwardModelMTAttnCK(
input_size= 768 * 2,
output_size_classification=56,
output_size_regression=2
)
checkpoint = torch.load(self.model_weights, map_location=self.device, weights_only=False)
state_dict = checkpoint["state_dict"]
# Adjust the keys in the state_dict
state_dict = {key.replace("model.", ""): value for key, value in state_dict.items()}
# Filter state_dict to match model's keys
model_keys = set(self.music2emo_model.state_dict().keys())
filtered_state_dict = {key: value for key, value in state_dict.items() if key in model_keys}
# Load the filtered state_dict and set the model to evaluation mode
self.music2emo_model.load_state_dict(filtered_state_dict)
self.music2emo_model.to(self.device)
self.music2emo_model.eval()
def predict(self, audio, threshold = 0.5):
feature_dir = Path("./temp_out")
output_dir = Path("./output")
current_dir = Path("./")
if feature_dir.exists():
shutil.rmtree(str(feature_dir))
if output_dir.exists():
shutil.rmtree(str(output_dir))
feature_dir.mkdir(parents=True)
output_dir.mkdir(parents=True)
warnings.filterwarnings('ignore')
logger.logging_verbosity(1)
# use_cuda = torch.cuda.is_available()
# device = torch.device("cuda" if use_cuda else "cpu")
mert_dir = feature_dir / "mert"
mert_dir.mkdir(parents=True)
# args = parser.parse_args()
# --- MERT feature extract ---
waveform, sample_rate = torchaudio.load(audio)
if waveform.shape[0] > 1:
waveform = waveform.mean(dim=0).unsqueeze(0)
waveform = waveform.squeeze()
waveform, sample_rate = resample_waveform(waveform, sample_rate, resample_rate)
if is_split:
segments = split_audio(waveform, sample_rate)
for i, segment in enumerate(segments):
segment_save_path = os.path.join(mert_dir, f"segment_{i}.npy")
self.feature_extractor.extract_features_from_segment(segment, sample_rate, segment_save_path)
else:
segment_save_path = os.path.join(mert_dir, f"segment_0.npy")
self.feature_extractor.extract_features_from_segment(waveform, sample_rate, segment_save_path)
embeddings = []
layers_to_extract = [5,6]
segment_embeddings = []
for filename in sorted(os.listdir(mert_dir)): # Sort files to ensure sequential order
file_path = os.path.join(mert_dir, filename)
if os.path.isfile(file_path) and filename.endswith('.npy'):
segment = np.load(file_path)
concatenated_features = np.concatenate(
[segment[:, layer_idx, :] for layer_idx in layers_to_extract], axis=1
)
concatenated_features = np.squeeze(concatenated_features) # Shape: 768 * 2 = 1536
segment_embeddings.append(concatenated_features)
segment_embeddings = np.array(segment_embeddings)
if len(segment_embeddings) > 0:
final_embedding_mert = np.mean(segment_embeddings, axis=0)
else:
final_embedding_mert = np.zeros((1536,))
final_embedding_mert = torch.from_numpy(final_embedding_mert)
final_embedding_mert.to(self.device)
# --- Chord feature extract ---
config = HParams.load("./inference/data/run_config.yaml")
config.feature['large_voca'] = True
config.model['num_chords'] = 170
model_file = './inference/data/btc_model_large_voca.pt'
idx_to_chord = idx2voca_chord()
model = BTC_model(config=config.model).to(self.device)
if os.path.isfile(model_file):
checkpoint = torch.load(model_file)
mean = checkpoint['mean']
std = checkpoint['std']
model.load_state_dict(checkpoint['model'])
audio_path = audio
audio_id = audio_path.split("/")[-1][:-4]
try:
feature, feature_per_second, song_length_second = audio_file_to_features(audio_path, config)
except:
logger.info("audio file failed to load : %s" % audio_path)
assert(False)
logger.info("audio file loaded and feature computation success : %s" % audio_path)
feature = feature.T
feature = (feature - mean) / std
time_unit = feature_per_second
n_timestep = config.model['timestep']
num_pad = n_timestep - (feature.shape[0] % n_timestep)
feature = np.pad(feature, ((0, num_pad), (0, 0)), mode="constant", constant_values=0)
num_instance = feature.shape[0] // n_timestep
start_time = 0.0
lines = []
with torch.no_grad():
model.eval()
feature = torch.tensor(feature, dtype=torch.float32).unsqueeze(0).to(self.device)
for t in range(num_instance):
self_attn_output, _ = model.self_attn_layers(feature[:, n_timestep * t:n_timestep * (t + 1), :])
prediction, _ = model.output_layer(self_attn_output)
prediction = prediction.squeeze()
for i in range(n_timestep):
if t == 0 and i == 0:
prev_chord = prediction[i].item()
continue
if prediction[i].item() != prev_chord:
lines.append(
'%.3f %.3f %s\n' % (start_time, time_unit * (n_timestep * t + i), idx_to_chord[prev_chord]))
start_time = time_unit * (n_timestep * t + i)
prev_chord = prediction[i].item()
if t == num_instance - 1 and i + num_pad == n_timestep:
if start_time != time_unit * (n_timestep * t + i):
lines.append('%.3f %.3f %s\n' % (start_time, time_unit * (n_timestep * t + i), idx_to_chord[prev_chord]))
break
save_path = os.path.join(feature_dir, os.path.split(audio_path)[-1].replace('.mp3', '').replace('.wav', '') + '.lab')
with open(save_path, 'w') as f:
for line in lines:
f.write(line)
# logger.info("label file saved : %s" % save_path)
# lab file to midi file
starts, ends, pitchs = list(), list(), list()
intervals, chords = mir_eval.io.load_labeled_intervals(save_path)
for p in range(12):
for i, (interval, chord) in enumerate(zip(intervals, chords)):
root_num, relative_bitmap, _ = mir_eval.chord.encode(chord)
tmp_label = mir_eval.chord.rotate_bitmap_to_root(relative_bitmap, root_num)[p]
if i == 0:
start_time = interval[0]
label = tmp_label
continue
if tmp_label != label:
if label == 1.0:
starts.append(start_time), ends.append(interval[0]), pitchs.append(p + 48)
start_time = interval[0]
label = tmp_label
if i == (len(intervals) - 1):
if label == 1.0:
starts.append(start_time), ends.append(interval[1]), pitchs.append(p + 48)
midi = pm.PrettyMIDI()
instrument = pm.Instrument(program=0)
for start, end, pitch in zip(starts, ends, pitchs):
pm_note = pm.Note(velocity=120, pitch=pitch, start=start, end=end)
instrument.notes.append(pm_note)
midi.instruments.append(instrument)
midi.write(save_path.replace('.lab', '.midi'))
tonic_signatures = ["A", "A#", "B", "C", "C#", "D", "D#", "E", "F", "F#", "G", "G#"]
mode_signatures = ["major", "minor"] # Major and minor modes
tonic_to_idx = {tonic: idx for idx, tonic in enumerate(tonic_signatures)}
mode_to_idx = {mode: idx for idx, mode in enumerate(mode_signatures)}
idx_to_tonic = {idx: tonic for tonic, idx in tonic_to_idx.items()}
idx_to_mode = {idx: mode for mode, idx in mode_to_idx.items()}
with open('inference/data/chord.json', 'r') as f:
chord_to_idx = json.load(f)
with open('inference/data/chord_inv.json', 'r') as f:
idx_to_chord = json.load(f)
idx_to_chord = {int(k): v for k, v in idx_to_chord.items()} # Ensure keys are ints
with open('inference/data/chord_root.json') as json_file:
chordRootDic = json.load(json_file)
with open('inference/data/chord_attr.json') as json_file:
chordAttrDic = json.load(json_file)
try:
midi_file = converter.parse(save_path.replace('.lab', '.midi'))
key_signature = str(midi_file.analyze('key'))
except Exception as e:
key_signature = "None"
key_parts = key_signature.split()
key_signature = sanitize_key_signature(key_parts[0]) # Sanitize key signature
key_type = key_parts[1] if len(key_parts) > 1 else 'major'
# --- Key feature (Tonic and Mode separation) ---
if key_signature == "None":
mode = "major"
else:
mode = key_signature.split()[-1]
encoded_mode = mode_to_idx.get(mode, 0)
mode_tensor = torch.tensor([encoded_mode], dtype=torch.long).to(self.device)
converted_lines = normalize_chord(save_path, key_signature, key_type)
lab_norm_path = save_path[:-4] + "_norm.lab"
# Write the converted lines to the new file
with open(lab_norm_path, 'w') as f:
f.writelines(converted_lines)
chords = []
if not os.path.exists(lab_norm_path):
chords.append((float(0), float(0), "N"))
else:
with open(lab_norm_path, 'r') as file:
for line in file:
start, end, chord = line.strip().split()
chords.append((float(start), float(end), chord))
encoded = []
encoded_root= []
encoded_attr=[]
durations = []
for start, end, chord in chords:
chord_arr = chord.split(":")
if len(chord_arr) == 1:
chordRootID = chordRootDic[chord_arr[0]]
if chord_arr[0] == "N" or chord_arr[0] == "X":
chordAttrID = 0
else:
chordAttrID = 1
elif len(chord_arr) == 2:
chordRootID = chordRootDic[chord_arr[0]]
chordAttrID = chordAttrDic[chord_arr[1]]
encoded_root.append(chordRootID)
encoded_attr.append(chordAttrID)
if chord in chord_to_idx:
encoded.append(chord_to_idx[chord])
else:
print(f"Warning: Chord {chord} not found in chord.json. Skipping.")
durations.append(end - start) # Compute duration
encoded_chords = np.array(encoded)
encoded_chords_root = np.array(encoded_root)
encoded_chords_attr = np.array(encoded_attr)
# Maximum sequence length for chords
max_sequence_length = 100 # Define this globally or as a parameter
# Truncate or pad chord sequences
if len(encoded_chords) > max_sequence_length:
# Truncate to max length
encoded_chords = encoded_chords[:max_sequence_length]
encoded_chords_root = encoded_chords_root[:max_sequence_length]
encoded_chords_attr = encoded_chords_attr[:max_sequence_length]
else:
# Pad with zeros (padding value for chords)
padding = [0] * (max_sequence_length - len(encoded_chords))
encoded_chords = np.concatenate([encoded_chords, padding])
encoded_chords_root = np.concatenate([encoded_chords_root, padding])
encoded_chords_attr = np.concatenate([encoded_chords_attr, padding])
# Convert to tensor
chords_tensor = torch.tensor(encoded_chords, dtype=torch.long).to(self.device)
chords_root_tensor = torch.tensor(encoded_chords_root, dtype=torch.long).to(self.device)
chords_attr_tensor = torch.tensor(encoded_chords_attr, dtype=torch.long).to(self.device)
model_input_dic = {
"x_mert": final_embedding_mert.unsqueeze(0),
"x_chord": chords_tensor.unsqueeze(0),
"x_chord_root": chords_root_tensor.unsqueeze(0),
"x_chord_attr": chords_attr_tensor.unsqueeze(0),
"x_key": mode_tensor.unsqueeze(0)
}
model_input_dic = {k: v.to(self.device) for k, v in model_input_dic.items()}
classification_output, regression_output = self.music2emo_model(model_input_dic)
probs = torch.sigmoid(classification_output)
tag_list = np.load ( "./inference/data/tag_list.npy")
tag_list = tag_list[127:]
mood_list = [t.replace("mood/theme---", "") for t in tag_list]
threshold = threshold
predicted_moods = [mood_list[i] for i, p in enumerate(probs.squeeze().tolist()) if p > threshold]
# Print the results
# print("Predicted Mood Tags:", predicted_moods)
valence, arousal = regression_output.squeeze().tolist()
# Print results
# print("\n🎵 **Music Emotion Recognition Results** 🎵")
# print("-" * 50)
# print(f"🎭 **Predicted Mood Tags:** {', '.join(predicted_moods) if predicted_moods else 'None'}")
# print(f"💖 **Valence:** {valence:.2f} (Scale: 1-9)")
# print(f"⚡ **Arousal:** {arousal:.2f} (Scale: 1-9)")
# print("-" * 50)
# self.model.eval()
# self.modelReg.eval()
# with torch.set_grad_enabled(False):
# f_path_midi = output_dir / "output.mid"
# f_path_flac = output_dir / "output.flac"
# f_path_video_out = output_dir / "output.mp4"
model_output_dic = {
"valence": valence,
"arousal": arousal,
"predicted_moods": predicted_moods
}
return model_output_dic
|