English
music
emotion
music2emo / model /linear_attn_ck.py
kjysmu's picture
Upload 14 files
146cf91 verified
import os
import torch
import torch.nn as nn
import pytorch_lightning as pl
from sklearn import metrics
from transformers import AutoModelForAudioClassification
import numpy as np
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=100):
super().__init__()
self.encoding = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model))
self.encoding[:, 0::2] = torch.sin(position * div_term)
self.encoding[:, 1::2] = torch.cos(position * div_term)
self.encoding = self.encoding.unsqueeze(0) # Shape: (1, max_len, d_model)
def forward(self, x):
seq_len = x.size(1)
return x + self.encoding[:, :seq_len, :].to(x.device)
class FeedforwardModelAttnCK(nn.Module):
def __init__(self, input_size, output_size, nhead=8, num_layers=1, dropout_rate=0.1,
num_key = 2, num_chords=158, num_chords_root=14, num_chords_attr=14,
key_emb_dim=4, chord_emb_dim=8, chord_root_emb_dim=4, chord_attr_emb_dim=4):
super().__init__()
self.d_model = 512
self.d_model_transformer = chord_root_emb_dim + chord_attr_emb_dim
# Embedding layers for chords and keys
self.chord_root_embedding = nn.Embedding(num_chords_root, chord_root_emb_dim)
self.chord_attr_embedding = nn.Embedding(num_chords_attr, chord_attr_emb_dim)
nn.init.xavier_uniform_(self.chord_root_embedding.weight)
nn.init.xavier_uniform_(self.chord_attr_embedding.weight)
# Positional encoding for chord progression
self.positional_encoding = PositionalEncoding(self.d_model_transformer)
# Transformer for chord progression modeling
self.chord_transformer = nn.TransformerEncoder(
nn.TransformerEncoderLayer(d_model=self.d_model_transformer, nhead=nhead, dim_feedforward= 64, dropout=0.1, batch_first=True),
num_layers=2
)
# Input projection for latent features
self.input_proj = nn.Sequential(
nn.Linear(input_size + self.d_model_transformer + 1, self.d_model),
nn.ReLU(),
)
# Output projection
self.output_proj = nn.Sequential(
nn.Linear(self.d_model, 256),
nn.ReLU(),
nn.Linear(256, output_size),
)
def forward(self, model_input_dic ):
x_mert = model_input_dic["x_mert"]
x_chord_root = model_input_dic["x_chord_root"]
x_chord_attr = model_input_dic["x_chord_attr"]
x_key = model_input_dic["x_key"]
key_embedding = x_key.float()
chord_root_embedding = self.chord_root_embedding(x_chord_root) # Shape: (batch_size, seq_len, chord_root_emb_dim)
chord_attr_embedding = self.chord_attr_embedding(x_chord_attr) # Shape: (batch_size, seq_len, chord_attr_emb_dim)
# Concatenate root and attribute embeddings
chord_combined_embedding = torch.cat(
(chord_root_embedding, chord_attr_embedding), dim=-1
) # Shape: (batch_size, seq_len, chord_root_emb_dim + chord_attr_emb_dim)
# Positional encoding and chord transformer
chord_combined_embedding = self.positional_encoding(chord_combined_embedding)
cls_token = torch.zeros_like(chord_combined_embedding[:, :1, :])
chord_embedding_with_cls = torch.cat([cls_token, chord_combined_embedding], dim=1) # Add CLS at the start
chord_embedding_transformed = self.chord_transformer(chord_embedding_with_cls) # Shape: (seq_len+1, batch_size, chord_emb_dim)
chord_embedding_cls = chord_embedding_transformed[:,0,:] # Shape: (batch_size, chord_emb_dim)
# Combine all features
combined_features = torch.cat((x_mert, chord_embedding_cls, key_embedding), dim=1)
# Input projection
combined_features = self.input_proj(combined_features) # Shape: (batch_size, d_model)
output = self.output_proj(combined_features) # Shape: (batch_size, output_size)
return output