--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9341149273447821 - name: Recall type: recall value: 0.9520363513968361 - name: F1 type: f1 value: 0.9429904984164028 - name: Accuracy type: accuracy value: 0.9866515570730559 --- # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0741 - Precision: 0.9341 - Recall: 0.9520 - F1: 0.9430 - Accuracy: 0.9867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0775 | 1.0 | 1756 | 0.0694 | 0.8912 | 0.9273 | 0.9089 | 0.9817 | | 0.0377 | 2.0 | 3512 | 0.0707 | 0.9245 | 0.9445 | 0.9344 | 0.9850 | | 0.0243 | 3.0 | 5268 | 0.0671 | 0.9281 | 0.9465 | 0.9372 | 0.9855 | | 0.0145 | 4.0 | 7024 | 0.0734 | 0.9353 | 0.9507 | 0.9429 | 0.9859 | | 0.006 | 5.0 | 8780 | 0.0741 | 0.9341 | 0.9520 | 0.9430 | 0.9867 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1 ### How to use and it's democase from transformers import pipeline model_checkpoint = "amannagrawall002/bert-finetuned-ner" token_classifier = pipeline( "token-classification", model=model_checkpoint, aggregation_strategy="simple" ) print(token_classifier("My name is Sylvain and I work at Hugging Face in Brooklyn.")) # [{'entity_group': 'PER', 'score': 0.9997023, 'word': 'Sylvain', 'start': 11, 'end': 18}, {'entity_group': 'ORG', 'score': 0.995275, 'word': 'Hugging Face', 'start': 33, 'end': 45}, {'entity_group': 'LOC', 'score': 0.9987465, 'word': 'Brooklyn', 'start': 49, 'end': 57}]