File size: 1,845 Bytes
4bcbd79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
base_model: moussaKam/barthez-orangesum-abstract
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: barthez-orange-ft
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# barthez-orange-ft

This model is a fine-tuned version of [moussaKam/barthez-orangesum-abstract](https://huggingface.co/moussaKam/barthez-orangesum-abstract) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 7.5955
- Rouge1: 0.7166
- Rouge2: 0.7001
- Rougel: 0.7163
- Rougelsum: 0.7161
- Gen Len: 20.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log        | 0.96  | 12   | 9.5195          | 0.7166 | 0.7001 | 0.7163 | 0.7161    | 20.0    |
| No log        | 2.0   | 25   | 8.0721          | 0.7166 | 0.7001 | 0.7163 | 0.7161    | 20.0    |
| No log        | 2.88  | 36   | 7.5955          | 0.7166 | 0.7001 | 0.7163 | 0.7161    | 20.0    |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.13.3