File size: 2,377 Bytes
b83639d 25ebb4b b83639d 25ebb4b b83639d 25ebb4b b83639d 25ebb4b b83639d 25ebb4b b83639d 25ebb4b b83639d 25ebb4b b83639d 25ebb4b b83639d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
library_name: transformers
license: apache-2.0
base_model: facebook/dinov2-base
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: dinov2-finetuned-har
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9148148148148149
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dinov2-finetuned-har
This model is a fine-tuned version of [facebook/dinov2-base](https://huggingface.co/facebook/dinov2-base) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3078
- Accuracy: 0.9148
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.9429 | 0.9910 | 83 | 0.5624 | 0.8328 |
| 0.7912 | 1.9940 | 167 | 0.4755 | 0.8587 |
| 0.7371 | 2.9970 | 251 | 0.4584 | 0.8550 |
| 0.5915 | 4.0 | 335 | 0.3870 | 0.8762 |
| 0.5635 | 4.9910 | 418 | 0.4037 | 0.8704 |
| 0.498 | 5.9940 | 502 | 0.3876 | 0.8804 |
| 0.4541 | 6.9970 | 586 | 0.3612 | 0.8884 |
| 0.3513 | 8.0 | 670 | 0.3240 | 0.9053 |
| 0.2963 | 8.9910 | 753 | 0.3176 | 0.9116 |
| 0.2815 | 9.9104 | 830 | 0.3078 | 0.9148 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|