File size: 7,237 Bytes
b54bf3c
aea7238
b54bf3c
 
 
64262c3
b54bf3c
 
 
8d41aec
25a8604
8d41aec
 
4e7495e
25a8604
4e7495e
25a8604
8d41aec
 
f4f3a3e
8d41aec
 
18f8eec
 
 
 
8d41aec
64262c3
 
 
b54bf3c
64262c3
b54bf3c
64262c3
 
18f8eec
 
 
 
 
2c8e3a0
18f8eec
 
64262c3
 
 
 
 
aea7238
18f8eec
8d41aec
18f8eec
8d41aec
 
4e7495e
8d41aec
4e7495e
18f8eec
8d41aec
18f8eec
64262c3
18f8eec
a737583
18f8eec
 
 
64262c3
18f8eec
64262c3
aea7238
18f8eec
25a8604
18f8eec
25a8604
 
 
 
 
18f8eec
25a8604
18f8eec
64262c3
18f8eec
a737583
18f8eec
 
 
64262c3
18f8eec
64262c3
25a8604
b54bf3c
8d41aec
25a8604
8d41aec
 
25a8604
8d41aec
4e7495e
25a8604
8d41aec
25a8604
 
aea7238
b54bf3c
18f8eec
b54bf3c
25a8604
64262c3
25a8604
 
 
 
 
 
 
64262c3
25a8604
 
64262c3
25a8604
 
18f8eec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64262c3
 
18f8eec
 
b0a7877
18f8eec
 
 
 
 
 
dbabaf1
64262c3
 
 
 
dbabaf1
18f8eec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import torch
from typing import Dict, Any, List
from PIL import Image
import base64
from io import BytesIO
import logging


class EndpointHandler:
    """
    A handler class for processing image and text data, generating embeddings using a specified model and processor.

    Attributes:
        model: The pre-trained model used for generating embeddings.
        processor: The pre-trained processor used to process images and text before model inference.
        device: The device (CPU or CUDA) used to run model inference.
        default_batch_size: The default batch size for processing images and text in batches.
    """

    def __init__(self, path: str = "", default_batch_size: int = 4):
        """
        Initializes the EndpointHandler with a specified model path and default batch size.

        Args:
            path (str): Path to the pre-trained model and processor.
            default_batch_size (int): Default batch size for processing images and text data.
        """
        # Initialize logging
        logging.basicConfig(level=logging.INFO)
        self.logger = logging.getLogger(__name__)

        from colpali_engine.models import ColQwen2, ColQwen2Processor

        self.logger.info("Initializing model and processor.")
        try:
            self.model = ColQwen2.from_pretrained(
                path,
                torch_dtype=torch.bfloat16,
                device_map="auto",
            ).eval()
            self.processor = ColQwen2Processor.from_pretrained(path)
            self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
            self.model.to(self.device)
            self.default_batch_size = default_batch_size
            self.logger.info("Initialization complete.")
        except Exception as e:
            self.logger.error(f"Failed to initialize model or processor: {e}")
            raise

    def _process_image_batch(self, images: List[Image.Image]) -> List[List[float]]:
        """
        Processes a batch of images and generates embeddings.

        Args:
            images (List[Image.Image]): List of images to process.

        Returns:
            List[List[float]]: List of embeddings for each image.
        """
        self.logger.debug(f"Processing batch of {len(images)} images.")
        try:
            batch_images = self.processor.process_images(images).to(self.device)
            with torch.no_grad():
                image_embeddings = self.model(**batch_images)
            self.logger.debug("Image batch processing complete.")
            return image_embeddings.cpu().tolist()
        except Exception as e:
            self.logger.error(f"Error processing image batch: {e}")
            raise

    def _process_text_batch(self, texts: List[str]) -> List[List[float]]:
        """
        Processes a batch of text queries and generates embeddings.

        Args:
            texts (List[str]): List of text queries to process.

        Returns:
            List[List[float]]: List of embeddings for each text query.
        """
        self.logger.debug(f"Processing batch of {len(texts)} text queries.")
        try:
            batch_queries = self.processor.process_queries(texts).to(self.device)
            with torch.no_grad():
                query_embeddings = self.model(**batch_queries)
            self.logger.debug("Text batch processing complete.")
            return query_embeddings.cpu().tolist()
        except Exception as e:
            self.logger.error(f"Error processing text batch: {e}")
            raise

    def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
        """
        Processes input data containing base64-encoded images and text queries, decodes them, and generates embeddings.

        Args:
            data (Dict[str, Any]): Dictionary containing input images, text queries, and optional batch size.

        Returns:
            Dict[str, Any]: Dictionary containing generated embeddings for images and text or error messages.
        """
        images_data = data.get("image", [])
        text_data = data.get("text", [])
        batch_size = data.get("batch_size", self.default_batch_size)

        # Decode and process images
        images = []
        if images_data:
            self.logger.info("Decoding images from base64.")
            for img_data in images_data:
                if isinstance(img_data, str):
                    try:
                        image_bytes = base64.b64decode(img_data)
                        image = Image.open(BytesIO(image_bytes)).convert("RGB")
                        images.append(image)
                    except Exception as e:
                        self.logger.error(f"Invalid image data: {e}")
                        return {"error": f"Invalid image data: {e}"}
                else:
                    self.logger.error("Images should be base64-encoded strings.")
                    return {"error": "Images should be base64-encoded strings."}

        image_embeddings = []
        if images:
            self.logger.info("Processing image embeddings.")
            try:
                for i in range(0, len(images), batch_size):
                    batch_images = images[i : i + batch_size]
                    batch_embeddings = self._process_image_batch(batch_images)
                    image_embeddings.extend(batch_embeddings)
            except Exception as e:
                self.logger.error(f"Error generating image embeddings: {e}")
                return {"error": f"Error generating image embeddings: {e}"}

        # Process text data
        text_embeddings = []
        if text_data:
            self.logger.info("Processing text embeddings.")
            try:
                for i in range(0, len(text_data), batch_size):
                    batch_texts = text_data[i : i + batch_size]
                    batch_text_embeddings = self._process_text_batch(batch_texts)
                    text_embeddings.extend(batch_text_embeddings)
            except Exception as e:
                self.logger.error(f"Error generating text embeddings: {e}")
                return {"error": f"Error generating text embeddings: {e}"}

        # Compute similarity scores if both image and text embeddings are available
        scores = []
        if image_embeddings and text_embeddings:
            self.logger.info("Computing similarity scores.")
            try:
                image_embeddings_tensor = torch.tensor(image_embeddings).to(self.device)
                text_embeddings_tensor = torch.tensor(text_embeddings).to(self.device)
                with torch.no_grad():
                    scores = (
                        self.processor.score_multi_vector(
                            text_embeddings_tensor, image_embeddings_tensor
                        )
                        .cpu()
                        .tolist()
                    )
                self.logger.info("Similarity scoring complete.")
            except Exception as e:
                self.logger.error(f"Error computing similarity scores: {e}")
                return {"error": f"Error computing similarity scores: {e}"}

        return {"image": image_embeddings, "text": text_embeddings, "scores": scores}