amaye15
Rollback
f4f3a3e
raw
history blame
3.38 kB
import torch
from typing import Dict, Any, List
from PIL import Image
import base64
from io import BytesIO
class EndpointHandler:
"""
A handler class for processing image data, generating embeddings using a specified model and processor.
Attributes:
model: The pre-trained model used for generating embeddings.
processor: The pre-trained processor used to process images before model inference.
device: The device (CPU or CUDA) used to run model inference.
default_batch_size: The default batch size for processing images in batches.
"""
def __init__(self, path: str = "", default_batch_size: int = 4):
"""
Initializes the EndpointHandler with a specified model path and default batch size.
Args:
path (str): Path to the pre-trained model and processor.
default_batch_size (int): Default batch size for image processing.
"""
from colpali_engine.models import ColQwen2, ColQwen2Processor
self.model = ColQwen2.from_pretrained(
path,
torch_dtype=torch.bfloat16,
).eval()
self.processor = ColQwen2Processor.from_pretrained(path)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model.to(self.device)
self.default_batch_size = default_batch_size
def _process_batch(self, images: List[Image.Image]) -> List[List[float]]:
"""
Processes a batch of images and generates embeddings.
Args:
images (List[Image.Image]): List of images to process.
Returns:
List[List[float]]: List of embeddings for each image.
"""
batch_images = self.processor.process_images(images)
batch_images = {k: v.to(self.device) for k, v in batch_images.items()}
with torch.no_grad():
image_embeddings = self.model(**batch_images)
return image_embeddings.cpu().tolist()
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
"""
Processes input data containing base64-encoded images, decodes them, and generates embeddings.
Args:
data (Dict[str, Any]): Dictionary containing input images and optional batch size.
Returns:
Dict[str, Any]: Dictionary containing generated embeddings or error messages.
"""
images_data = data.get("inputs", [])
batch_size = data.get("batch_size", self.default_batch_size)
if not images_data:
return {"error": "No images provided in 'inputs'."}
images = []
for img_data in images_data:
if isinstance(img_data, str):
try:
image_bytes = base64.b64decode(img_data)
image = Image.open(BytesIO(image_bytes)).convert("RGB")
images.append(image)
except Exception as e:
return {"error": f"Invalid image data: {e}"}
else:
return {"error": "Images should be base64-encoded strings."}
embeddings = []
for i in range(0, len(images), batch_size):
batch_images = images[i : i + batch_size]
batch_embeddings = self._process_batch(batch_images)
embeddings.extend(batch_embeddings)
return {"embeddings": embeddings}