|
import math |
|
from typing import Optional, Tuple, Union, List, Dict |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from einops import rearrange, repeat |
|
from transformers import PreTrainedModel, LlamaConfig |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast |
|
from transformers.models.llama.modeling_llama import ( |
|
LlamaRMSNorm, |
|
LlamaRotaryEmbedding, |
|
LlamaLinearScalingRotaryEmbedding, |
|
LlamaDynamicNTKScalingRotaryEmbedding, |
|
LlamaMLP, |
|
apply_rotary_pos_emb, |
|
repeat_kv, |
|
) |
|
from transformers.cache_utils import Cache, DynamicCache, StaticCache |
|
|
|
|
|
class DiffLLaMAConfig(LlamaConfig): |
|
""" |
|
Configuration class for the DiffLLaMA model. |
|
Inherits from LlamaConfig and can be extended with additional parameters. |
|
""" |
|
model_type = "diff_llama" |
|
|
|
def __init__( |
|
self, |
|
num_kv_heads: int = 8, |
|
intermediate_size: int = 3072, |
|
rope_scaling: Optional[Dict[str, Union[str, float]]] = None, |
|
**kwargs |
|
): |
|
super().__init__(**kwargs) |
|
self.num_kv_heads = num_kv_heads |
|
self.intermediate_size = intermediate_size |
|
self.rope_scaling = rope_scaling or {"type": "linear", "factor": 1.0} |
|
|
|
|
|
|
|
def init_method(tensor): |
|
"""Initialize tensor with Kaiming uniform initialization.""" |
|
nn.init.kaiming_uniform_(tensor, a=math.sqrt(5)) |
|
|
|
def lambda_init_fn(depth): |
|
"""Compute lambda initialization value based on layer depth.""" |
|
return 0.8 - 0.6 * math.exp(-0.3 * depth) |
|
|
|
class MultiheadDiffAttn(nn.Module): |
|
def __init__(self, config: DiffLLaMAConfig, layer_idx: Optional[int] = None): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.num_key_value_heads = config.num_kv_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.rope_theta = config.rope_theta |
|
|
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) |
|
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) |
|
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) |
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) |
|
|
|
self.scaling = self.head_dim ** -0.5 |
|
|
|
self.rotary_emb = self._init_rope() |
|
|
|
self.lambda_init = lambda_init_fn(layer_idx if layer_idx is not None else 0) |
|
self.lambda_q1 = nn.Parameter(torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0, std=0.1)) |
|
self.lambda_k1 = nn.Parameter(torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0, std=0.1)) |
|
self.lambda_q2 = nn.Parameter(torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0, std=0.1)) |
|
self.lambda_k2 = nn.Parameter(torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0, std=0.1)) |
|
|
|
self.subln = nn.LayerNorm(self.num_heads * self.head_dim, elementwise_affine=False) |
|
|
|
self._init_rope() |
|
|
|
def _init_rope(self): |
|
if not hasattr(self.config, 'rope_scaling') or self.config.rope_scaling is None: |
|
self.rotary_emb = LlamaRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
base=self.rope_theta, |
|
) |
|
else: |
|
scaling_type = self.config.rope_scaling.get("type", "linear") |
|
scaling_factor = self.config.rope_scaling.get("factor", 1.0) |
|
if scaling_type == "linear": |
|
self.rotary_emb = LlamaLinearScalingRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
scaling_factor=scaling_factor, |
|
base=self.rope_theta, |
|
) |
|
elif scaling_type == "dynamic": |
|
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
scaling_factor=scaling_factor, |
|
base=self.rope_theta, |
|
) |
|
else: |
|
raise ValueError(f"Unknown RoPE scaling type {scaling_type}") |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
batch_size, seq_length, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(batch_size, seq_length, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(batch_size, seq_length, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value[0].shape[-2] |
|
cos, sin = self.rotary_emb(value_states, position_ids) |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
if past_key_value is not None: |
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
|
|
past_key_value = (key_states, value_states) if use_cache else None |
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(-1, -2)) |
|
attn_weights = attn_weights * self.scaling |
|
|
|
lambda_1 = torch.exp(torch.sum(self.lambda_q1 * self.lambda_k1)) |
|
lambda_2 = torch.exp(torch.sum(self.lambda_q2 * self.lambda_k2)) |
|
lambda_full = lambda_1 - lambda_2 + self.lambda_init |
|
|
|
|
|
attn_weights_diff = attn_weights[:, :, :, :-1] - lambda_full * attn_weights[:, :, :, 1:] |
|
attn_weights = torch.cat([attn_weights_diff, attn_weights[:, :, :, -1:]], dim=-1) |
|
|
|
if attention_mask is not None: |
|
|
|
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) |
|
attention_mask = attention_mask.expand(batch_size, self.num_heads, seq_length, attention_mask.size(-1)) |
|
attention_mask = attention_mask.to(dtype=attn_weights.dtype) |
|
|
|
|
|
attn_weights = attn_weights + (1.0 - attention_mask) * -10000.0 |
|
|
|
attn_weights = F.softmax(attn_weights, dim=-1) |
|
|
|
attn_output = torch.matmul(attn_weights, value_states) |
|
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, seq_length, self.num_heads * self.head_dim) |
|
|
|
attn_output = self.subln(attn_output) |
|
attn_output = attn_output * (1 - self.lambda_init) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class DiffLLaMALayer(nn.Module): |
|
""" |
|
A single layer of the DiffLLaMA model, consisting of multi-head differential attention and a feed-forward network. |
|
Incorporates gradient checkpointing for memory efficiency. |
|
""" |
|
def __init__(self, config: DiffLLaMAConfig, layer_idx: int): |
|
super().__init__() |
|
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.self_attn = MultiheadDiffAttn( |
|
config=config, |
|
layer_idx=layer_idx |
|
) |
|
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.mlp = LlamaMLP(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
residual = hidden_states |
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
class DiffLLaMAModel(PreTrainedModel): |
|
""" |
|
DiffLLaMAModel is a variant of LLaMA with differential attention mechanisms. |
|
Incorporates mixed precision training and gradient checkpointing for optimized performance. |
|
""" |
|
config_class = DiffLLaMAConfig |
|
|
|
def __init__(self, config: DiffLLaMAConfig): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size) |
|
self.layers = nn.ModuleList([ |
|
DiffLLaMALayer(config, layer_idx=i) for i in range(config.num_hidden_layers) |
|
]) |
|
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.rotary_emb = LlamaRotaryEmbedding( |
|
dim=config.hidden_size // config.num_attention_heads, |
|
max_position_embeddings=config.max_position_embeddings, |
|
base=config.rope_theta, |
|
) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[Tuple[torch.FloatTensor, torch.FloatTensor]]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
|
|
""" |
|
Forward pass for the DiffLLaMAModel with performance optimizations. |
|
|
|
Args: |
|
input_ids: Input token IDs. |
|
attention_mask: Attention mask. |
|
position_ids: Position IDs. |
|
past_key_values: Past key and value tensors for caching. |
|
inputs_embeds: Input embeddings. |
|
use_cache: Whether to return present key and value for caching. |
|
output_attentions: Whether to output attention weights. |
|
output_hidden_states: Whether to output hidden states. |
|
return_dict: Whether to return a dict. |
|
cache_position: Position IDs for caching. |
|
|
|
Returns: |
|
Model output, either as a tuple or a BaseModelOutputWithPast. |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange(seq_length, dtype=torch.long, device=device) |
|
position_ids = position_ids.unsqueeze(0).expand(batch_size, -1) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
|
|
|
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones((batch_size, seq_length), device=hidden_states.device) |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_cache = () if use_cache else None |
|
|
|
for idx, layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
layer_outputs = layer( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values[idx] if past_key_values is not None else None, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
) |
|
|
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
present_key_value = layer_outputs[-1] |
|
next_cache += (present_key_value,) |
|
|
|
if output_attentions: |
|
self_attn_weights = layer_outputs[1] |
|
all_self_attns += (self_attn_weights,) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = None |
|
if use_cache: |
|
next_cache = ( |
|
next_cache.to_legacy_cache() if isinstance(next_cache, Cache) else next_cache |
|
) |
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
class DiffLLaMAForCausalLM(PreTrainedModel): |
|
""" |
|
DiffLLaMA model with a causal language modeling head. |
|
Incorporates mixed precision training for optimized performance. |
|
""" |
|
config_class = DiffLLaMAConfig |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config: DiffLLaMAConfig): |
|
super().__init__(config) |
|
self.model = DiffLLaMAModel(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
"""Return input embeddings.""" |
|
return self.model.get_input_embeddings() |
|
|
|
def set_input_embeddings(self, value): |
|
"""Set input embeddings.""" |
|
self.model.set_input_embeddings(value) |
|
|
|
def get_output_embeddings(self): |
|
"""Return output embeddings (language modeling head).""" |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
"""Set output embeddings (language modeling head).""" |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
"""Set the decoder model.""" |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
"""Get the decoder model.""" |
|
return self.model |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[Tuple[torch.FloatTensor, torch.FloatTensor]]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
""" |
|
Forward pass for DiffLLaMAForCausalLM with performance optimizations. |
|
|
|
Args: |
|
input_ids: Input token IDs. |
|
attention_mask: Attention mask. |
|
position_ids: Position IDs. |
|
past_key_values: Past key and value tensors for caching. |
|
inputs_embeds: Input embeddings. |
|
labels: Labels for computing the loss. |
|
use_cache: Whether to return past key and value tensors. |
|
output_attentions: Whether to output attention weights. |
|
output_hidden_states: Whether to output hidden states. |
|
return_dict: Whether to return a dict. |
|
cache_position: Position IDs for caching. |
|
|
|
Returns: |
|
CausalLMOutputWithPast or tuple containing loss and logits. |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
cache_position=cache_position, |
|
) |
|
|
|
hidden_states = outputs.last_hidden_state if return_dict else outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = nn.CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
if shift_logits.dtype == torch.float16: |
|
with torch.cuda.amp.autocast(enabled=False): |
|
loss = loss_fct(shift_logits, shift_labels) |
|
else: |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
if use_cache: |
|
return ((loss, logits) + outputs[1:]) if loss is not None else (logits,) + outputs[1:] |
|
else: |
|
return (loss, logits) if loss is not None else (logits,) |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
if past_key_values: |
|
input_ids = input_ids[:, -1:] |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
"cache_position": kwargs.get("cache_position"), |
|
} |
|
) |
|
return model_inputs |
|
|
|
|
|
|