#!/usr/bin/env python from typing import Tuple import argparse import onnxruntime import os import sys import time import torch import torchvision.datasets as datasets import torchvision.transforms as transforms from torchvision.transforms import InterpolationMode from torch.utils.data import DataLoader from tqdm import tqdm parser = argparse.ArgumentParser() parser.add_argument( "--onnx_model", default="model.onnx", help="Input onnx model") parser.add_argument( "--data_dir", default="/workspace/dataset/imagenet", help="Directory of dataset") parser.add_argument( "--batch_size", default=1, type=int, help="Evaluation batch size") parser.add_argument( "--ipu", action="store_true", help="Use IPU for inference.", ) parser.add_argument( "--provider_config", type=str, default="vaip_config.json", help="Path of the config file for seting provider_options.", ) args = parser.parse_args() class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self, name, fmt=':f'): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' return fmtstr.format(**self.__dict__) def accuracy(output: torch.Tensor, target: torch.Tensor, topk: Tuple[int] = (1,)) -> Tuple[float]: """Computes the accuracy over the k top predictions for the specified values of k. Args: output: Prediction of the model. target: Ground truth labels. topk: Topk accuracy to compute. Returns: Accuracy results according to 'topk'. """ with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res def prepare_data_loader(data_dir: str, batch_size: int = 100, workers: int = 8) -> torch.utils.data.DataLoader: """Returns a validation data loader of ImageNet by given `data_dir`. Args: data_dir: Directory where images stores. There must be a subdirectory named 'validation' that stores the validation set of ImageNet. batch_size: Batch size of data loader. workers: How many subprocesses to use for data loading. Returns: An object of torch.utils.data.DataLoader. """ valdir = os.path.join(data_dir, 'validation') normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) val_dataset = datasets.ImageFolder( valdir, transforms.Compose([ transforms.Resize(256, interpolation=InterpolationMode.BICUBIC), transforms.CenterCrop(224), transforms.ToTensor(), normalize, ])) return torch.utils.data.DataLoader( val_dataset, batch_size=batch_size, shuffle=False, num_workers=workers, pin_memory=True) def val_imagenet(): """Validate ONNX model on ImageNet dataset.""" print(f'Current onnx model: {args.onnx_model}') if args.ipu: providers = ["VitisAIExecutionProvider"] provider_options = [{"config_file": args.provider_config}] else: providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] provider_options = None ort_session = onnxruntime.InferenceSession( args.onnx_model, providers=providers, provider_options=provider_options) val_loader = prepare_data_loader(args.data_dir, args.batch_size) top1 = AverageMeter('Acc@1', ':6.2f') top5 = AverageMeter('Acc@5', ':6.2f') start_time = time.time() val_loader = tqdm(val_loader, file=sys.stdout) with torch.no_grad(): for batch_idx, (images, targets) in enumerate(val_loader): inputs, targets = images.numpy(), targets ort_inputs = {ort_session.get_inputs()[0].name: inputs} outputs = ort_session.run(None, ort_inputs) outputs = torch.from_numpy(outputs[0]) acc1, acc5 = accuracy(outputs, targets, topk=(1, 5)) top1.update(acc1, images.size(0)) top5.update(acc5, images.size(0)) current_time = time.time() print('Test Top1 {:.2f}%\tTop5 {:.2f}%\tTime {:.2f}s\n'.format( float(top1.avg), float(top5.avg), (current_time - start_time))) return top1.avg, top5.avg if __name__ == '__main__': val_imagenet()