File size: 3,938 Bytes
32865f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
---
license: apache-2.0
datasets:
- COCO
metrics:
- mAP
language:
- en
tags:
- RyzenAI
- object-detection
- vision
- YOLO
- Pytorch
---

# YOLOv3 model trained on COCO

YOLOv3 is trained on COCO object detection (118k annotated images) at resolution 416x416. It was released in https://github.com/ultralytics/yolov3/tree/v8.

We develop a modified version that could be supported by [AMD Ryzen AI](https://ryzenai.docs.amd.com).


## Model description

YOLOv3 🚀 is the world's most loved vision AI, representing Ultralytics open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.


## Intended uses & limitations

You can use the raw model for object detection. See the [model hub](https://huggingface.co/models?search=amd/yolov3) to look for all available YOLOv3 models.


## How to use

### Installation

   Follow [Ryzen AI Installation](https://ryzenai.docs.amd.com/en/latest/inst.html) to prepare the environment for Ryzen AI.
   Run the following script to install pre-requisites for this model.
   ```bash
   pip install -r requirements.txt 
   ```


### Data Preparation (optional: for accuracy evaluation)

The dataset MSCOCO2017 contains 118287 images for training and 5000 images for validation.

1. Download COCO dataset
2. Run general_json2yolo.py to generate the labels folder and val2017.txt
  ```sh
  python general_json2yolo.py
  ```
Finally, COCO dataset should look like this:
```plain
+ coco/
    + annotations/
        + instance_val2017.json
        + ...
    + images/
        + val2017/
          + 000000000139.jpg
          + 000000000285.jpg
          + ...   
    + labels/
        + val2017/
          + 000000000139.txt
          + 000000000285.txt
          + ...      
    + val2017.txt
```



### Test & Evaluation

 - Code snippet from [`onnx_inference.py`](onnx_inference.py) on how to use
```python
    onnx_path = "yolov3-8.onnx"
    onnx_model = onnxruntime.InferenceSession(
        onnx_path, providers=providers, provider_options=provider_options)

    path = opt.img
    new_path = os.path.join(opt.out, "demo_infer.jpg")

    conf_thres, iou_thres, classes, agnostic_nms, max_det = 0.25, \
        0.45, None, False, 1000

    img0 = cv2.imread(path)
    img = pre_process(img0)
    onnx_input = {onnx_model.get_inputs()[0].name: img}
    onnx_output = onnx_model.run(None, onnx_input)
    onnx_output = post_process(onnx_output)

    pred = non_max_suppression(
        onnx_output[0],
        conf_thres,
        iou_thres,
        multi_label=False,
        classes=classes,
        agnostic=agnostic_nms)

    colors = [[random.randint(0, 255) for _ in range(3)]
              for _ in range(len(names))]
    det = pred[0]
    im0 = img0.copy()

    if len(det):
        # Rescale boxes from imgsz to im0 size
        det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

        # Write results
        for *xyxy, conf, cls in reversed(det):
            label = '%s %.2f' % (names[int(cls)], conf)
            plot_one_box(xyxy, im0, label=label, color=colors[int(cls)])

    # Stream results
    cv2.imwrite(new_path, im0)
```

 - Run inference for a single image
  ```sh
  python onnx_inference.py --img INPUT_IMG_PATH --out OUTPUT_DIR --ipu --provider_config Path\To\vaip_config.json
  ```
  *Note: __vaip_config.json__ is located at the setup package of Ryzen AI (refer to [Installation](#installation))*

 - Test accuracy of the quantized model
  ```sh
  python onnx_test.py --ipu --provider_config Path\To\vaip_config.json
  ```

### Performance

|Metric |Accuracy on IPU|
| :----:  | :----: |
|AP\@0.50:0.95|0.389|


```bibtex
@misc{redmon2018yolov3,
      title={YOLOv3: An Incremental Improvement}, 
      author={Joseph Redmon and Ali Farhadi},
      year={2018},
      eprint={1804.02767},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```