File size: 4,878 Bytes
d857ef1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
---
license: apache-2.0
tags:
- RyzenAI
- object-detection
- vision
- YOLO
- Pytorch
datasets:
- COCO
metrics:
- mAP
---
# YOLOv5s model trained on COCO
YOLOv5s is the small version of YOLOv5 model trained on COCO object detection (118k annotated images) at resolution 640x640. It was released in [https://github.com/ultralytics/yolov5](https://github.com/ultralytics/yolov5).
We develop a modified version that could be supported by [AMD Ryzen AI](https://onnxruntime.ai/docs/execution-providers/Vitis-AI-ExecutionProvider.html).
## Model description
YOLOv5 π is the world's most loved vision AI, representing Ultralytics open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
## Intended uses & limitations
You can use the raw model for object detection. See the [model hub](https://huggingface.co/models?search=amd/yolov5) to look for all available YOLOv5 models.
## How to use
### Installation
Follow [Ryzen AI Installation](https://ryzenai.docs.amd.com/en/latest/inst.html) to prepare the environment for Ryzen AI.
Run the following script to install pre-requisites for this model.
```bash
pip install -r requirements.txt
```
### Data Preparation (optional: for accuracy evaluation)
The dataset MSCOCO2017 contains 118287 images for training and 5000 images for validation.
Download COCO dataset and create directories in your code like this:
```plain
βββ datasets
βββ coco
βββ annotations
| βββ instances_val2017.json
| βββ ...
βββ labels
| βββ val2017
| | βββ 000000000139.txt
| βββ 000000000285.txt
| βββ ...
βββ images
| βββ val2017
| | βββ 000000000139.jpg
| βββ 000000000285.jpg
βββ val2017.txt
```
1. put the val2017 image folder under images directory or use a softlink
2. the labels folder and val2017.txt above are generate by **general_json2yolo.py**
3. modify the coco.yaml like this:
```markdown
path: /path/to/your/datasets/coco # dataset root dir
train: train2017.txt # train images (relative to 'path') 118287 images
val: val2017.txt # val images (relative to 'path') 5000 images
```
### Test & Evaluation
- Code snippet from [`onnx_inference.py`](onnx_inference.py) on how to use
```python
args = make_parser().parse_args()
onnx_path = args.model
onnx_model = onnxruntime.InferenceSession(onnx_path)
grid = np.load("./grid.npy", allow_pickle=True)
anchor_grid = np.load("./anchor_grid.npy", allow_pickle=True)
path = args.image_path
new_path = args.output_path
conf_thres, iou_thres, classes, agnostic_nms, max_det = 0.25, 0.45, None, False, 1000
img0 = cv2.imread(path)
img = pre_process(img0)
onnx_input = {onnx_model.get_inputs()[0].name: img}
onnx_output = onnx_model.run(None, onnx_input)
onnx_output = post_process(onnx_output)
pred = non_max_suppression(
onnx_output[0], conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det
)
colors = Colors()
det = pred[0]
im0 = img0.copy()
annotator = Annotator(im0, line_width=2, example=str(names))
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Write results
for *xyxy, conf, cls in reversed(det):
c = int(cls) # integer class
label = f"{names[c]} {conf:.2f}"
annotator.box_label(xyxy, label, color=colors(c, True))
# Stream results
im0 = annotator.result()
cv2.imwrite(new_path, im0)
```
- Run inference for a single image
```python
python onnx_inference.py -m ./yolov5s_qat.onnx -i /Path/To/Your/Image --ipu --provider_config /Path/To/Your/Provider_config
```
*Note: __vaip_config.json__ is located at the setup package of Ryzen AI (refer to [Installation](#installation))*
- Test accuracy of the quantized model
```python
python onnx_eval.py -m ./yolov5s_qat.onnx --ipu --provider_config /Path/To/Your/Provider_config
```
### Performance
|Metric |Accuracy on IPU|
| :----: | :----: |
|AP\@0.50:0.95|0.356|
```bibtex
@software{glenn_jocher_2021_5563715,
author = {Glenn Jocher et. al.},
title = {{ultralytics/yolov5: v6.0 - YOLOv5n 'Nano' models,
Roboflow integration, TensorFlow export, OpenCV
DNN support}},
month = oct,
year = 2021,
publisher = {Zenodo},
version = {v6.0},
doi = {10.5281/zenodo.5563715},
url = {https://doi.org/10.5281/zenodo.5563715}
}
```
|